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Introduction 
 
Geotechnical Engineering is a quite young branch of the science, if 
compared to other disciplines, such as Structural or Mechanical 
Engineering. In fact it was Terzaghi in 1933 who proposed a rigorous and 
organized approach for understanding the behavior of the soil in the 
applications of Civil Engineering. Since then the Geotechnique has 
developed enormously, involving the study of more and more phenomena 
related to soils. 
When dealing with a real application, the main purpose of a geotechnical 
engineer is to comprehend which is the physical behavior of the global soil-
structure system and to find out the optimal solution in terms of safety and 
costs. In any design it becomes important the choice of those properties of 
the system that will be used for modeling the physical reality and for 
predicting the system behavior, under the action of the internal and external 
forces. In a general philosophy of designing, some basics are followed: 
resistance, deformations, durability , environmental impact and cost. 
Classically resistance and deformations are the first aspects in the designing 
process for the engineer, because they respectively refer to the safety from 
collapse and to the serviceability of the soil-structure system.  
As a consequence main relevance has always been given to the geotechnical 
parameters and to the methods used for their evaluation. In this work the 
attention has been put on two properties of the soil, i.e. the stiffness and the 
damping. Actually the aims of this research go beyond, since the more 
general goal of site characterization is sought. This implies not only the 
determination of the stiffness and damping profiles, but also the geometry of 
the site and the presence of the water table. 
In this regard non-invasive surface waves represent a valid alternative both 
to laboratory tests, when dealing with hard-to-sample soils and to in situ 
invasive tests, that give only localized information and are expensive, since 
require the use of boreholes. 
In the geophysical field the use of surface waves is not new, in fact seismic 
reflection and refraction methods are well established, but in the 
geotechnical scale the SASW (Spectral Analysis of Surface Waves) method 
has been used only recently worldwide. This technique consists of 
generating a perturbation at a point on the free surface of the site and then 
the traveling disturbance is measured at several stations on the same free 
surface. The speed of the surface waves depends on the geometry of the site 
as well as the stiffness of the soil. In addition the attenuation of the 
registered signal with distance from the source is due to both the 
geometrical spreading and the material damping. In this thesis major 
attention is focused on the dispersion and the attenuation of Rayleigh waves, 
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which represent the predominant components of motion of the surface 
waves in the far field. 
The site characterization by means of Rayleigh waves can be achieved 
performing three fundamental steps: 
1) experimental test in which the real system is excited and the traveling 
perturbation is measured at the several stations, for calculating the 
experimental system response. 
2) theoretical simulation of the wave propagation phenomenon through an 
ideal layered site, in order to evaluate the theoretical system response, which 
must be consistent with the experimental response as much as possible. 
3) inversion problem, in which the system parameters are perturbed until the 
distance between the experimental and the theoretical system responses is 
minimized. This task is achieved by means of an optimization algorithm. 
 
In this thesis we search a new theoretical procedure, that be consistent with 
the experimental multistation SASW method, and a valid inversion 
algorithm, that allows for the investigation of systems with both regular 
(normally dispersive) and irregular (inversely dispersive) stiffness profiles. 
In order to achieve this purpose, the relative importance of all the Rayleigh 
modes needs to be understood during propagation in a layered medium. 
The multistation SASW method manifests advantages and limitations 
respect to other techniques, in fact it has to be considered only one 
complementary tool for soil investigation. One drawback could be the 
complexity associated to the inversion problem, that could give rise to the 
non-uniqueness of the solution. Another limitation is that the stiffness and 
the damping of soils are concerned with very small deformations. 
Nevertheless the multistation SASW method provides the most reliable 
values of the stiffness and damping for soil-structure dynamical interaction, 
since the in situ real scale is involved. 
The potentialities of the multistation SASW method show up in a wide 
variety of geotechnical applications, such as pavement system identification, 
offshore characterization, soil improvement tests, obstacle detection. 
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Thesis Outline 

 
Except for the introductory parts of the Chapters 1, 2 and 4, the rest of the 
thesis represents an original contribution to the research on Rayleigh waves 
propagation through layered media and geotechnical soil characterization by 
means of multistation SASW method. 
In Chapter 1, after a brief summary of the basic concepts of the wave 
propagation in linear elastic, mono-phase, isotropic media, the attention is 
focused on generalized modes of Rayleigh waves through a layered half-
space and their numerical search. Some numerical problems in searching the 
Rayleigh modes have been pointed out and solved. 
Chapter 2 is addressed to the soil characterization by means of surface 
waves from the early methods in the 60’s and 80’s until nowadays. Both 
geophysical and geotechnical techniques are reminded and a new approach 
is proposed, for obtaining the theoretical response of the system. As 
innovative contribution of this research the relative importance of Rayleigh 
waves generated at the free surface of a layered medium is explained in the 
frequency-wave number domain and the frequencies and wave numbers of 
resonance are recognized. This two aspects constitute an original 
contribution to the knowledge of the influence of higher modes of Rayleigh 
waves for geotechnical soil characterization and surface wave motion. The 
Chapter ends with a new formula for frequencies and wave numbers of 
resonance valid for a single layer over an infinite half-space. This formula is 
a very useful result, because puts in evidence the effects of surface Rayleigh 
waves in soil-structure dynamic interactions. 
In Chapter 3 the new method for the theoretical simulation of the system 
response is inserted into an inversion procedure, which identifies either the 
shear waves velocities or the thickness profiles with depth by means of a 
non-linear constrained optimization algorithm. The algorithm used for 
minimizing the distance between the theoretical and the experimental 
system responses is the Davidon-Fletcher-Powell (DFP), that belongs to the 
class of Quasi-Newton algorithms. As system response the geometrical 
dispersion relation of Rayleigh waves is adopted. The optimization 
algorithm is based on the new approach presented by the author in Chapter 2 
and it is part of the code developed by the author for solving the Rayleigh 
inversion problem. 
In Chapter 4 the theory of visco-elasticity is utilized for determining the 
damping ratio profile. By using the correspondence principle of visco-
elasticity the complex eigenvalue Rayleigh problem is solved and both the 
coupled and the uncoupled inversion procedures are presented. The 
attenuation relation of Rayleigh waves is added to the geometrical 
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dispersion relation as system response. The effort is made for considering al 
the Rayleigh modes in the Geometric spreading of the perturbation, instead 
of the simplified geometrical attenuation law for homogeneous half-space. 
The original idea of a hybrid approach is presented, which combines 
coupled measurements and uncoupled inversion of the dispersion and the 
attenuation relations. 
Chapter 5 is devoted to the experimental results, that represent a 
fundamental aspect of the research. The experiments have the meaningful 
role of validating or rejecting the theoretical interpretation of the real 
phenomena. A theoretical model can be accepted for simulation and 
prediction of real phenomena, only if it is supported by a good agreement 
with experimental observations and no contradictions exist in any particular 
manifestations. In this Chapter both the uncoupled and the coupled 
procedures are employed for the characterization of real sites and a hybrid 
approach is also proposed.  
Some issues have been confined into the Appendices, nevertheless they 
have relevant importance for the development of the ideas contained in this 
thesis. 
In Appendix A the equivalence of any type of surface point source in 
evaluating the geometrical dispersion relation of Rayleigh waves is 
affirmed. For the first time both theoretical demonstration and experimental 
evidence are provided for such a statement. This result reveals to be a key 
element in the theoretical simulation of the dispersion relation of Rayleigh 
waves, because it says that it is not necessary to characterize the source for 
the simulation. In fact the theoretical Rayleigh dispersion relation is 
evaluated, by using the Transfer function of the system, obtained by 
knowing the system response to a time harmonic source. Instead the 
experimental dispersion relation is calculated, by using the measurements 
obtained by means of either an impulsive or a harmonic source.  
In Appendix B the interesting concept of the equivalence, under precise 
circumstances, of the energy speed and the group velocity associated to a 
traveling perturbation is reminded. In addition the new concept of an 
apparent group velocity is underlined. The idea of an apparent group 
velocity is supported by the observation of a wave train, that spreads away 
from the source. Into the wave train different modes are contained, each one 
of them traveling at their own phase and group velocities. Nevertheless if 
the several components are thought to be combined together to form a 
whole complicate disturbance, when the dispersion phenomenon has not 
completely occurred yet, it can be assumed that the energy of the whole 
perturbation propagates at a sort of an equivalent speed, i.e. the apparent 
group velocity. Indeed the apparent group velocity is the velocity of the 
whole disturbance as it is measured in the experiments. For the apparent 
group velocity an analytical expression has been derived. 
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In Appendix C the stiffness matrix method is followed for the explicit 
evaluation of the geometrical Rayeligh dispersion relation in the case of a 
single layer over an infinite half-space. Just in this simple case the 
difficulties of an analytical approach are evident. 
The thesis ends up with the Conclusions, in which the efforts, the ideas and 
the limitations of this research are reminded. 
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Chapter1 
 
 

Wave propagation in elastic solids 
 

 
Introduction 

 
In this chapter we present the propagation of waves in an unbounded region, 
through an interface, in a homogeneous and in a layered half-space. This 
will enable us to introduce several types of waves: reflected and transmitted, 
body waves and interface waves. Among them the Rayleigh waves and their 
geometrical dispersion relation will be treated in detail into a layered half-
space. 
 
 
1.1 Unbounded region 
 
In the sequel we will assume that the medium is homogeneous, isotropic, 
linear elastic. We will model the medium as an equivalent continuum, in 
which the stress and the strain tensors σ and ε can be mathematically 
defined as continuous and derivable functions inside the region of interest. 
In particular the strain tensor can be expressed in terms of the derivatives of 
the displacements, under the hypothesis of small strain, as: 
 

)(
2
1

,, ijjiij uu +=ε        (1.1) 

 
The rotation tensor can also be introduced as: 
 

)(
2
1

,, ijjiij uu −=ϑ        (1.2) 

 
The stress tensor  can be used in order to evaluate the traction t by means of 
the Cauchy’s stress formula: 
 

kkll nt σ=          (1.3) 
 
where k denotes the direction of the unit vector n perpendicular to the 
surface element and l indicates the direction of the traction on the surface 
element. 



                                   Chapter 1: Wave propagation in elastic solids__________________ 

 2

By the balance of momentum of momentum it can be easily shown that the 
stress tensor is symmetric, being the medium non polar, that is: 
 

jiij σσ =          (1.4) 
 
Thanks to the hypothesis of linear elasticity it is possible to express the 
constitutive law, that correlates the state of the stress to the stress of the 
strain, with a 4-th order tensor Cijkl : 
 

klijklij C εσ =         (1.5) 
 
where Cijkl = Cjikl= Cklij= Cijlk , since both the stress and the strain tensors are 
symmetric. 
Under the assumptions of homogeneity and isotropy the 21 independent 
elastic constants reduce to only 2, so that we can write the Hooke's law as: 
 

ijijkkij µεδλεσ 2+=        (1.6) 
 
where λ and µ are the Lame's elastic constants and δij is the Kronecker delta. 
It is useful to define the stress and the strain deviators s and e as: 
 

ijkkijijs δσσ
3
1−=        (1.7a) 

 

ijkkijije δεε
3
1−=         (1.7b) 

 
As it can be seen each of them is obtained substructing from either the stress 
or the strain tensor a spherical tensor. It can be proved that the following 
relationships hold between the deviatoric stress and strain tensors: 
 

ijij es ⋅= µ2         (1.8a) 
 

kkkk B εσ ⋅= 3         (1.8b) 
 
where µ and  
 

µλ
3
2+=B         (1.9) 
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are the shear and the bulk moduli. 
 
Other two elastic constants, which are commonly used, are the Young's 
modulus E and the Poisson's ratio ν. The links among all the elastic 
constants introduced up to now are illustrated in the table below: 
 

 E, ν µ λ, µ 
λ 

)21)(1( νν
ν

−+
E

 
E

E
−
−

µ
µµ

3
)2(

 
λ 

µ 

)1(2 ν+
E

 
µ µ 

E E E 

µλ
µλµ

+
+ )23(

 

B 

)21(3 ν−
E

 
)3(3 E

E
−µ

µ
 µλ

3
2+  

ν ν 

µ
µ

2
2−E

 
)(2 µλ

λ
+

 

 
Table 1.1: Relationships among isotropic elastic constants (Achenbach, 
1999). 
 
According to the principle of balance of linear momentum, the 
instantaneous rate of change of the linear momentum of a body is equal to 
the resultant external force acting on the body at the particular instant of 
time. As a consequence the Cauchy's first law of motion holds: 
 

llkkl uf &&ρρσ =+,        (1.10) 
 
 
where ρ is the mass density, fl is the component of the body force per unit 
mass in the direction l, lu&&  is the component of the acceleration along l. 
The equations (1.1), (1.6), (1.10) enable one to write the equations of 
motion in terms of displacements: 
 

iijijjji ufuu &&ρρµλµ =+++ ,, )(   i=1, 2, 3  (1.11) 
 
In order to completely define the elasto-dynamic problem, both boundary 
conditions and initial conditions must be specified. The boundary conditions 
can be expressed in terms of displacements or tractions, the initial 
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conditions are usually explicited at time t=0 for displacements and 
velocities. 
In vector notation the (1.11) can be rewritten as: 
 

uuu &&ρµλµ =⋅∇∇++∇ )(2       (1.12) 
 
where ∇ and ∇2 are the nabla and the Laplacian operators. 
If we decompose the displacements in terms of the scalar potential ϕ and the 
vector potential ψ : 
 

ψϕ ∧∇+∇=u         (1.13) 
 

),,( 321 ψψψψ =         (1.14) 
 
substituting (1.13) into (1.12), we have: 
 

0][])2[( 22 =−∇∧∇+−∇+∇ ψρψµϕρϕµλ &&&&     (1.15) 
 
from which the two equations of motion follow: 
 

ϕϕ &&2
2 1

Pc
=∇         (1.16a) 

 

ψψ &&2
2 1

Sc
=∇         (1.16b) 

 

where 
ρ

µλ 22 +=Pc  and 
ρ
µ=2

Sc      (1.17a, 1.17b) 

 
The use of potentials to decompose the displacement field allows for the 
coupled equations of motion (1.12) with the 3 components of the 
displacements to be uncoupled into longitudinal and shear patterns of 
motion. Nevertheless a coupling still exists when trying to satisfy the 
boundary conditions. 
From (1.16a) and (1.16b) it can be seen that in an unbounded medium two 
different kinds of waves can propagate. The first one is named compression 
wave P. The particle motion is in the same direction as the wave travels 
along with a speed cP and no distortion occurs. The second wave is the 
distortional or shear wave S, that is slower than the P wave, since cS<cP. The 
particles oscillate around their equilibrium position perpendicularly to the 
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direction of propagation without changes of volume. It is worthy to note that 
the speeds of P and S waves depend on the elastic properties of the. This is a 
fundamental feature, because the shear modulus G and the bulk modulus B 
can be easily evaluated, by measuring the velocities of P and S waves. 
 
1.1.1 Shapes of the wave fronts 
 
Up to now we know that in an unbounded medium two kinds of waves, say 
P and S waves, can propagate, but we have not specified yet which shape 
their wave fronts have. First of all it is necessary to properly define the 
concept of a wave front. To a perturbation we can associate a phase and an 
amplitude. The phase gives an idea of the periodicity in time and space of 
the motion, the amplitude is strictly correlated to the energy transported by 
the perturbation. The wave front of the wave can either refer to the phase or 
to the amplitude of the wave and in a three dimensional space it separates 
the region that has just experienced the perturbation from the region that is 
still at rest and has not been perturbed yet. Actually many geometric shapes 
may exist, but the simplest are of three types: plane, spherical and 
cylindrical. 
Plane waves are characterised by plane wave fronts upon which the 
amplitude of the perturbation remains constant, so that no geometrical 
attenuation shows up. This is why people at the extremes of a very long 
corridor can clearly hear each other when speaking. In spherical waves the 
total energy of the perturbation spreads out from the source with spherical 

wave fronts, so that the energy density decreases with a factor of 2

1
r

 at a 

distance r from the source. There are several examples in nature of spherical 
waves, such as the light coming from the sun or the sound produced by an 
explosion in a point of the sky. Finally cylindrical waves propagate along 
cylindrical wave fronts and the geometrical attenuation of the energy density 

is governed by a factor of 
r
1 . A typical example is given by the perturbation 

that travels on the surface of a lake after a stone has fallen into it. 
 
1.1.2 Progressive and standing waves 
 
Another important distinction among all the possible perturbations is 
between standing waves and progressive waves. Standing waves are 
characterised by the appearance of stationary points of zero phase, called 
nodes. They appear always the same in time and space and are likely to be 
found in bodies of finite dimensions. Progressive waves travel through the 
body with nodes that move.  
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For example the displacement due to a plane wave propagating with phase 
velocity c in the direction of the unit propagation vector p̂  can be written 
as: 
 

dctpxftxu ˆ)ˆ(),( −⋅=        (1.18) 
 
in which x  is the position vector, t is the time and d̂ is the unit vector 
indicating the direction of the particle motion. 
The wave fronts of the phase are expressed by: 
 

tconspx tanˆ =⋅         (1.19) 
 
and they travel perpendicularly to the propagation vector p̂ with a speed 
equal to c. 
A particular case of wave is the steady-state disturbance, since the quantities 
of interest can be mathematically described in the form: 
 

tiexAtxu ω⋅= )(),(        (1.20) 
 
where ω is the circular frequency and there is a separation of the spatial and 
temporal variables, since the amplitude A depends only on the position 
vector x  and the time t appears only in the phase term. 
This solution is expected when the source is time harmonic and the 
advantages is that every solution generated by any complicate external force 
can be represented as a proper combination of a finite or infinite number of 
steady-state solutions if the superposition principle holds. 
 
 
1.2 Plane interface between two half-spaces 
 
 
In the following we will deal with steady-state plane waves if not differently 
specified and it will be shown what happens when an incident wave 
encounters a plane interface between two half-spaces with different 
mechanical properties (fig.1.1). The first half-space is beneath the interface 
and its properties are λ, µ, and ρ, the second half-space is above the 
interface and its properties are indicated by the index B. 
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Figure 1.1:  Incident wave Ai, reflected A1, A2 and transmitted A3, A4 in-
plane waves at a plane interface between two different half-spaces. 
 
Let us consider the in-plane motion, so that only P and SV waves are 
concerned. In general an incident P or SV wave coming from the first half-
space generates both P and SV reflected waves in the same half-space and P 
and SV transmitted waves in the second half-space. Under particular 
conditions waves  propagating along the interface can be generated, that, 
when no one of the two half-spaces is air, are called Stoneley waves. In all 
cases the principle of causality must be respected, so that all the waves 
produced by the incident wave at the interface must propagate away from 
the interface (Achenbach, 1999). The principle of causality is one of the 
postulates of the theory of relativity and it states that in any real 
phenomenon in which it is possible to recognise the cause and the  related 
effects, the cause always precedes the effects. About this issue several 
researches have been conducted nowadays and it has been recently 
published a paper on Nature (Wang, L. J. Et al., 2000) in which the Authors 
claim to have experimentally shown how it is apparently possible to 
measure the output signal from a properly made system (the effects) before 
the input pulse (the cause). Actually as output quantity they have measured 
the signal travelling at the phase velocity, that does not transfer the energy 
associated to the signal. 
 
1.2.1 Incident P wave 
 
Let write the incident P wave in terms of displacements as: 
 

Ai 

ϑ4 A4

A3

A2 
A1 

ϑ3 

ϑ2 

ϑ1 

ϑi 

x2 

x1 

λB, µB, ρB 

λ, µ, ρ 
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)cos( 21 txksinxkiP
ii

iiiieAu ωϑϑ −+=       (1.21) 
 
Assume the same form for the reflected P (indicated by the index 1) and SV 
(indicated by the index 2) waves in the first half-space: 
 

)cos(
11

121111 txksinxkieAu ωϑϑ −−=       (1.22a) 
 

)cos(
22

222212 txksinxkieAu ωϑϑ −−=       (1.22b) 
 
 
and the transmitted P (indicated by the index 3) and SV (indicated by the 
index 4) waves in the second half-space: 
 
 

)cos(
33

323313 txksinxkieAu ωϑϑ −+=       (1.23a) 
 

)cos(
44

424414 txksinxkieAu ωϑϑ −−=       (1.23b) 
 
In formulas (1.21, 1.22a, 1.22b, 1.23a, 1.23b)  
 

 
PP

i c
k

λ
πω 2==   

Pc
k ω=1     (1.24a, 1.24b) 

 

Sc
k ω=2      B

Pc
k ω=3  B

Sc
k ω=4    (1.24a, 1.24b, 1.24c) 

 
 
are the wave numbers associated to the incident, reflected and transmitted 
waves, ϑi , ϑ1 , ϑ2 , ϑ3 , ϑ4 are the angles formed by the waves with the x2 
axe as shown in fig.1.1. 
Assuming that a perfect contact exists at the interface, the continuity of 
displacements and the stresses must be imposed: 
 

4321 uuuuui +=++   at  02 =x     (1.25a) 
 

4321 σσσσσ +=++i   at  02 =x     (1.25b) 
 
All the components must have the same exponential term, so it comes out 
that: 
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kckckckckck B

S
B
PSPPi ===== 4321      (1.26a) 

 
 

44332211 ϑϑϑϑϑ sinksinksinksinksink iii ====    (1.26b) 
 
Some considerations can just be done concerning the phases of all the 
involved waves. First of all the waves have the same apparent wave 
numbers k and hence the same apparent phase velocity c, that is the 
component parallel to the interface of each wave travels along the interface 
with the same phase velocity. Secondly the reflected P wave in the first half-
space is reflected at the same angle of the incident P wave, since: 
 

1kki =    1ϑϑ =i       (1.27) 
 
Finally both reflected and transmitted P waves are more inclined respect to 
the vertical than the correspondent reflected and transmitted SV waves, 
since the Snell’s law holds: 
 

B
S

B
PSP c

sin
c
sin

c
sin

c
sin 4321 ϑϑϑϑ ===       (1.28)  

 
Equations (1.25a, 1.25b) allow to determine the amplitudes of the generated 
waves as the unknowns of a linear system: 
 

[ ] { }NA

A
A
A
A

M i=



















⋅

4

3

2

1

       (1.29) 

 
in which [M] is a matrix 4x4 and N is a column vector 4x1, whose elements 
are functions of all the properties of the two half-spaces and of the angles ϑ, 
but not of the circular frequency ω.The expressions of the amplitudes and 
the matrix [M] and the vector (N) can be found in the book by (Achenbach, 
1999) and (Ewing et al., 1957). 
For incident SV waves again both SV and P waves can be generated at an 
interface according to the Snellius law (1.28), instead for incident SH waves 
only SH waves can be reflected and transmitted, since under the 
assumptions of isotropy the horizontal motion is uncoupled from the vertical 
motion. 
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1.2.2 Stoneley waves 
 
If we want to investigate the existence of waves travelling along the interface 
of separation between two half-spaces we should suppose displacements of the 
form: 
 
 

)(
431

12423 )( ctxikxbxb eeDeDu −+=   for 02 <x    (1.30a) 
 

)(
4

4
3

3
2

12423 )( ctxikxbxb eeD
b
ikeD

ik
bu −−=  for 02 <x    (1.30b) 

 
in the half-space 02 <x  (see fig.1.1) and: 
 
 

)(
211

12221 )( ctxikxbxb eeDeDu −−− +=  for 02 >x    (1.31a) 
 

)(
2

2
1

1
2

12221 )( ctxikxbxb eeD
b
ikeD

ik
bu −−− +−= for 02 >x    (1.31b) 

 
in the half-space 02 >x , in which D1, D2, D3, D4 are constants to be 
determined, whereas: 
 

2
1

2

1 1















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


−⋅=
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ckb  

2
1

2

2 1



















−⋅=

Sc
ckb     (1.32a, b) 

 

2
1

2

3 1



















−⋅= B

Pc
ckb  

2
1

2

4 1



















−⋅= B

Sc
ckb     (1.32c, d) 

 
 
are taken as positive values, with k wave number and c phase velocity of the 
surface wave. In the above formulas the subscripts 1, 2 refer to the components 
of motion perpendicular and parallel to the interface respectively. The 
superscript B in formulas (1.32) refers to the second half-space (x2>0). 
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From (1.30a, b) and (1.31a, b) we can see that the form chosen for the 
displacements is such that they exponentially decay along x2 going away from 
the interface, instead they can propagate along x1. 
By imposing the continuity of stresses and displacements at the interface a 
homogeneous system of four equations with the unknowns D1, D2, D3, D4 is 
obtained and in order to have non trivial solutions, the determinant of the 
coefficients must be set equal to zero.  
 
 

det
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
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


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b
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2

2
1

2

3

2

1

=0    (1.33) 

 
It is known ( Achenbach, 1999) that real and positive values of the phase 
velocity c that satisfy the above condition (1.33) are found only over a certain 
range of the ratios ρB/ρ and µB/µ. 
From a look at the matrix of the coefficients in (1.33) the reader can note that 
even in this case the elements of this matrix do not depend on the wave number 
k, but only on the characteristics of the two half-spaces, that means that 
Stoneley waves are not dispersive. 
 
 
1.3 Infinite homogeneous half-space 
 
 
When one of the two half-spaces separated by an interface, say the upper one, 
is air it can be assumed that there are not transmitted waves and in general only 
reflected waves exist. It can be proven that for a homogeneous half-space, 
besides the body P and S waves as just seen in an unbounded region, a new 
kind of wave exists, called Rayleigh wave from Lord Rayleigh who first 
investigated it.  



              _________      Chapter 1: Wave propagation in elastic solids___________________ 

 11

Rayleigh wave 
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λ, µ, ρ 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.2: Rayleigh waves in a homogeneous half-space 
 
With the aim of establishing the existence of the Rayleigh wave we want to 
know if a perturbation of the type: 
 
 

)(
1

12 ctxikbx eAeu −−=        (1.34a) 
 

)(
2

12 ctxikbx eBeu −−=        (1.34b) 
 
can satisfy the stress-free boundary condition at the free surface of the half-
space, when no other kinds of wave are present. 
In (1.34a, b) A, B and b are constants to be determined, with the constraint of a 
positive value for b, so that an exponential decay occurs going away from the 
free surface. Substituting the solutions (1.34a, b) into the equations of motion 
(1.12) two values of b are obtained for non trivial solutions of  A and B: 
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−⋅=

Sc
ckb     (1.35a, b) 

 
that are positive only if : 
 

PS ccc <<         (1.36) 
This means that if Rayleigh wave exists it must propagate with a speed c 
slower than S and P waves. A more general expression can be used for the 
displacements (1.34a, b), by means of the (1.35a, b): 
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[ ] )(
211

12221  ctxikxbxb eeAeAu −−− +=       (1.37a) 
 

)(
2

2
1

1
2

12221 ctxikxbxb eeA
b
ikeA

ik
bu −−−









+−=      (1.37b) 

 
By imposing the stress-free boundary condition and looking for non trivial 
solutions of A1 and A2 the following Rayleigh equation is reached: 
 

01142
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2
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2

=







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


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
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SPS c
c

c
c

c
c      (1.38) 

 
or in another form, introducing the concept of slowness s as the inverse of the 
phase velocity for surface, P and S waves respectively: 
 

c
s 1=  

P
P c

s 1=  
S

S c
s 1=     (1.39a, b, c) 

 
 

0)()(4)2()( 2
1

222
1

222222 =−−+−= ssssssssR PPS    (1.40) 
 
It is well established that (1.38) admits only one real and positive root c=cR<cS 

, that varies monotonically from 0.862⋅cS to 0.955⋅cS as the Poisson ratio 
increases from 0 to 0.5 according to the approximate formula (Achenbach, 
1999): 
 

SR cc ⋅
+
+=
ν

ν
1

14.1862.0        (1.41) 

 
Since the wave number k does not appear in (1.38) Rayleigh waves in a 
homogeneous half-space are not dispersive. 
Coming back to the displacements for Rayleigh waves, we can observe from 
fig.1.3 that the horizontal and the vertical components are 90° out of phase, so 
that during the propagation they generate an ellipse. The major axe of the 
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ellipse is parallel to the free surface down to a depth of about 0.2λ, where the 
horizontal displacement changes its sign and the orientation of the axes and the 
sense of going around of the ellipse are reversed. It can also be realized how 
the displacements drop down with increasing depth, so that the motion, due to 
Rayleigh wave, is confined in the upper side of the half-space, inside a length 
of about 1.5 wavelengths λ (see fig.1.4). 

 
Figure 1.3: Rayleigh disturbance on the free surface of a homogeneous half-
space (Bolt, B.A., 1976). 

 
Figure 1.4: Variation of horizontal and vertical normalized components of 
displacements induced by Rayleigh waves with normalized depth in a 
homogeneous isotropic, elastic half-space (Richart et al.,1970). 
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1.4 Layered half-space 
 
In the previous sections we have seen which types of waves can propagate into 
an unbounded region, i.e. P, SV, SH waves and in a homogeneous half-space, 
i.e. P, SV, SH and Rayleigh waves . We have also studied what happens at an 
interface between two half-spaces with different characteristics: mode 
conversion, Stoneley waves. We know that when a P or S wave encounters an 
interface, several kinds of waves can be generated, depending upon the 
properties of the two half-spaces. In a general situation part of the energy 
carried by the incident wave is reflected back and the remaining part passes 
through the interface, sometimes another part travels in the vicinity of the 
interface, that behaves like a store of energy. Anyway when a layered half-
spaced is considered, with n infinitely horizontal, homogeneous, linear elastic 
layers overlying an infinite half-space, it can be imagined how complicate it 
becomes to account for all the possible waves (see fig.1.5).  
 

Figure 1.5: Multiple interaction among incident, reflected and transmitted 
waves in a layered half-space: mode conversion phenomenon (from Richart et 
al.,1970). 
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What happens is an interaction among all the incident, reflected and 
transmitted waves inside each i-th layer, that combine together canceling or 
reinforcing each other, giving raise to destructive or constructive interference.  
In order to explain this concept, look at the fig.1.6  
 
 
 
 
 
 
 
Figure 1.6: Constructive interference of reflected rays in a wave-guide 
(Tolstoy, 1973, Ewing et al, 1957). 
 
If we consider a plane wave reflected back and forth inside a layer, after n 
reflections any pair of neighboring elements of a wave-front will remain in 
phase, that is: 
 
Path A to C = path B to D = nλ 
 
in which λ is the wavelength of the wave. 
 
Rigorously speaking the equations of motion must be written for each i-th layer 
using the mechanical properties of the layer. Also the continuity of 
displacements and stresses at the interfaces must be imposed. For each layer 4 
independent constants have been adopted: shear wave velocity VSi, thickness 
hi, Poisson’s ratio νi and mass density ρi (see fig.1.7). The radiation condition 
is also assumed (that is the perturbation disappears at infinite depth), in 
addition to the stress-free condition on the free surface (if no external loads are 
applied) and the boundary-initial conditions (that need to be specified for each 
situation). 
 
 
 
 
 
 
 
 

h 

D 
C B 

A ϑ 
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Figure 1.7: Model of the layered half-space 
 
1.4.1 Love waves 
 
Before going on with the analysis of the Rayleigh waves and the other types of 
surface waves in the vertical plane, Love waves deserve to be mentioned. Love 
waves are horizontally polarized waves that propagate near the free surface of a 
layered half-space (see fig.1.8). 

 
Figure 1.8: Love wave on the top of a layered half-space (Bolt, 1976). 

 
 In fact it can be proved that this type of wave cannot exist in an infinite 
homogeneous half-space (Aki and Richards, 1980, Pujol, 2002), and at least 
one layer is necessary for their existence. The reason is that Love waves are the 
result of the constructive interference among incident and multiple reflected 
SH waves. It is interesting to notice that, under the hypothesis of linear 
elasticity in an isotropic medium, an incident SH wave generates only reflected 
and transmitted SH waves and mode conversion does not occur, for the 

∞
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equation of motion for horizontal displacement is uncoupled. This aspect could 
be properly used in soil characterization, since during the experiments, only 
horizontally polarized motion should be measured, if a perfect horizontal 
source is employed. Even if it will not be shown herein, it is reminded that 
Love waves are dispersive, that is the phase velocity depends on the frequency 
associated to the wave, how it will be better explained in the next section 1.4.3. 
 
1.4.2 Head waves 
 
Head waves are also referred as “refraction arrivals” or “Lateral waves” and 
the “seismic refraction” method for determining the thickness and the body 
velocities of a layered half-space are based on these types of waves. When an 
incident wave impacts an interface between two layers with different velocities 
at the total internal reflection angle δ (see fig.1.9), a disturbance is generated, 
that travels along the interface with the velocity  v2 > v1 of the lower layer. 
 
 
 
 
 
 
 
 
 

Figure 1.9: Head wave generated at an interface 
 
On the interface the disturbance produces a new wave, that arises from the 
interface at the same angle δ and has got an amplitude proportional to the 
amplitude of the incident wave (Brekhovoskikh, 1960). 
 
1.4.3 Rayleigh waves and geometrical dispersion relation 
 
Our interest will be on Rayleigh waves in a layered half-space, since, as it will 
be shown, the geometrical dispersion of these waves in such a system 
constitutes a powerful tool for determining the geometrical and mechanical 
properties of the site (Rix, 2000, Lai, 1998, Foti, 2000). We want to investigate 
whether in a layered half-space, as previously described (see fig.1.7), Rayleigh 
waves can exist in absence of any external loads. Several ways have been 
followed by researchers in the past, for answering this question, but the most 

v2 > v1 II 

h 
I 

δ 
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common methods are the propagator matrix methods (Kennett, 1983, Aki and 
Richards, 1980) and the method of reflection and transmission coefficients 
(Kennet, 1974, Aki and Richards, 1980). The transfer matrix methods 
(Thomson, 1950, Haskell, 1953) and the dynamic stiffness matrix method 
(Kausel and Roesset, 1981) belong to the first class of methods. In the transfer 
matrix method, without loss of generality, a plane time harmonic perturbation 
is assumed as solution for the equations of motion in the vertical plane that are 
written for each layer. Successively by imposing the continuity of the velocities 
and the stresses at the interface between the n-th layer and the (n-1)-th layer, 
enables one to write a recursive formula that correlates stresses and 
displacements in one layer. The matrix that allows for such a correspondence is 
the transfer matrix of the layer. The quantities of the first layer and of the half-
space can be related, by means of the continuity of displacements and stresses 
at the interfaces. If the amplitude of the perturbation is made exponentially 
decay to zero at infinite depth (radiation condition) and the stresses at the free 
surface of the layered half-space are set equal to zero, a system of equations is 
obtained. In order to have non trivial solutions, the determinant of the matrix of 
the coefficients of this system, the so called global transfer matrix, must 
vanish. In this way the Rayleigh secular function (1.45) is originated. The 
Rayleigh secular function is an implicit relationship among the geometrical-
mechanical properties of the layered half-space and the frequency f and the 
wave number k of the possible perturbations, that we want to find into the 
system under the above specified conditions: 
 

0),,,,,( =fkhVsR iiii ρν  11 +÷= ni     (1.42)  
 
The stiffness matrix method is conceptually the same as the transfer matrix 
method, but it offers the advantages given by the use of  the tools of the 
structural analysis. 
By using the transfer matrix of the generic i-th layer, the equilibrium of the 
force acting on the i-th layer is assured and the stiffness matrix of the layer is 
defined as the link between the forces and the displacements at the two 
interfaces of the i-th layer. Then, using the rules of the structural analysis, the 
stiffness matrices of all the layers and the half-space are combined together at 
the nodal interfaces, to get the dynamic equilibrium of the whole system: 
 

XSF ⋅= ][         (1.43) 
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in which  F and  X  represent the external loads and the displacements at the 
interfaces of the layers. Even in this method in-plane time-harmonic solution 
has been assumed, so that the stiffness matrix S includes both inertial and 
elastic contributions expressed in terms of the geometrical and mechanical 
properties of the system VSi, hi, νi, ρi (i=1÷n+1) and of the circular frequency ω 
and the wave number k. 
Since we are interested in studying the free vibrations of the system, the 
external loads vector is set equal to zero: 
 

0=F          (1.44a) 
 
and the resulting homogeneous eigenvalue problem is considered: 
 

XS ⋅= ][0         (1.44b) 
 
 In order to look for non trivial solutions, the determinant of the stiffness 
matrix S must vanish: 
 

0]det[ =S         (1.45) 
 
In this way the Rayleigh geometrical dispersion relation is again reached in 
implicit form (1.42). In Appendix C the explicit analytical expression of the 
Rayleigh dispersion relation will be evaluated for the case of a single layer 
over an infinite half-space. In chapter 2 this simple system will be analyzed 
more in detail. 
Now we will focus on the roots of the Rayleigh dispersion relation (1.42), also 
called period equation of Rayleigh. Generally the roots are searched by 
numerical techniques, fixing a value of frequency f0 and looking for the wave 
numbers that satisfy (1.42). The Rayleigh dispersion relation is a multi-valued 
function, so for a fixed frequency several wave numbers may exist that solve 
(1.42). Each solution is an eigenvalue and physically represents a simple wave, 
called Rayleigh mode, that can propagate in the system under all the conditions 
that have been previously specified. For a fixed circular frequency ω0 the first 
mode corresponds to the greatest wave number k1 and it is the fundamental 
Rayleigh mode. The other wave numbers define the higher Rayleigh modes 
and are characterized by smaller wave numbers. For a better comprehension of 
these concepts an example (case A) will be introduced. 
Consider the system whose characteristics are reported in the table 1.2 below: 
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Layer Thickness h(m) Vp (m/s) Vs (m/s) Mass density (Kg/m3) 
1 5 600 350 1800 
2 10 700 400 1800 

Half-space ∞ 800 450 1800 
 

Table 1.2: Characteristics of the system for Case A 
 
If we plot the Rayleigh dispersion relation in the frequency- wave number 
domain (see fig.1.10), we observe that for very low frequencies at least one 
root or wave number k exists. 

 
Figure 1.10: Dispersion Relation and Rayleigh modes for Case A. 

 
It corresponds to the first or fundamental mode and in fig.1.10 is represented 
by blue dots.  
For frequencies greater than about 25 Hz a second root is found, that is the 
second mode (green plus) and so on for the other higher modes. It is evident 
that each higher mode appears above a certain frequency called cut-off 
frequency. The cut-off frequency increases as the mode number increases too 
and the mode cannot propagate below this critical frequency, since it does not 
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carry energy at all. It is important to underline that we have introduced the 
concept of Rayleigh modes as the roots of the dispersion relation (1.42), so 
instead of fixing a value of frequency and looking for the wave numbers that 
satisfy (1.42), we can also hold a fixed wave number and search all the 
frequencies that solve (1.42).  
This idea is easy to understand if in the fig.1.10 we enter with a particular wave 
number, say k=1/m and intersect the first three modal curves, to which three 
different frequencies correspond. It should be noted that the 7-th mode has got 
a cut-off frequency of about 150 Hz, hence it is not visible on the graph. 
For each mode we can define modal quantities, that refer to phase velocity, 
group velocity, displacement and energy. If we imagine to keep constant a 
value of frequency f0, each mode is individuated by its wave number and the 
modal phase velocity becomes: 
 

jj
j k

f
k

c 00 2πω
==         (1.46) 

 
Another quantity needs to be introduced, that is the group velocity defined as: 
 

k
ckc

k ∂
∂+=
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∂ω         (1.47) 

 
For a fixed value of frequency the group velocity is: 
 

j
j k

U
∂
∂

= 0ω
        (1.48) 

 Looking at the fig.1.11 the geometrical meaning of both phase and group 
velocities is presented. At a point P on a generic j-th modal curve the phase 
velocity is the tangent of the angle δ, instead the group velocity is the tangent 
of the angle β made by the tangent to the modal curve in P and the horizontal 
line. 
The physical meaning of these two velocities is explained in Appendix B, here 
we only say that the phase velocity describes how fast the surface of constant 
phase, associated to the perturbation, is moving. The group velocity has got a 
cinematic and an energetic definitions, so it may represent either the speed of a 
group of waves travelling together or the velocity of the energy carried by the 
disturbance. 



              _________      Chapter 1: Wave propagation in elastic solids___________________ 

 22

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.11: Geometric explanation of phase and group velocities in the 
frequency-wave number domain. 
 
Now that the significance of phase velocity has been clarified, it is possible to 
show the Rayleigh dispersion relation for the same case A in the phase 
velocity-frequency domain (fig.1.12): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.12: Rayleigh modes for case A. 
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In this representation some interesting aspects can be underlined. First of all for 
a given frequency each mode is characterized by its own velocity and this is 
why we talk of dispersion. Actually the dispersion of waves is always present 
in a system when waves of different wavelengths travel with different speeds. 
So if the phase velocity is a non constant function of the frequency, then 
dispersion exists and, as a consequence, group and phase velocities are 
different. 
In fig.1.12 the cut-off frequencies for the higher modes are again visible. It can 
also be observed that, at the cut-off frequency, all the modes have got a phase 
velocity equal to the shear wave velocity of the half-space VS∞=450 m/s. The 
reason is that at the cut-off frequency the generic j-th mode has got its greatest 
wavelength λmax according to the relationship between spatial and temporal 
scales: 
 

fc ⋅= λ           (1.49) 
 
For the second mode of the case A the maximum wavelength is: 
 

m
Hz

sm
f

c
offcut

5.17
7.25

/450
max =≅=

−

λ      (1.50) 

 
Since Rayleigh waves travel on the surface inside a belt of about 1-2 
wavelengths, the disturbance with a great wavelength is mainly travelling 
through the deepest layer. On the other hand for very high frequencies the 
wavelength is so small, that it is as if the disturbance does not feel the presence 
of the deeper layers and travels through the surface layer with the same phase 
velocity that it would have in a homogeneous half-space with the same 
characteristics of the first layer. In fact as the frequency increases to infinity, 
all the modal phase velocities tend to the value given by (1.41), where cS 
=VS1=350m/s and ν=0.24: 
 

smsmc /320/350
24.01

24.014.1862.0 =⋅
+

⋅+=  

 
 The figure 1.13 well illustrates the physical insight behind these observations: 
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Figure 1.13: Depth sampled by Rayleigh waves with different wavelengths 
(Stokoe II and Santamarina, 2000) 
 
Waves with different wavelengths give information on the medium by 
sampling its characteristics at different depths. Of course a medium-size 
wavelength, that involves all the layers, informs about averaged properties. 
This feature constitutes the basis for soil characterization in practice. 
 
 
1.4.3.1 Some aspects about the search of the Rayleigh modes 
 
The code used for solving the eigenvalue problem (1.45) and finding the roots 
of  the geometrical dispersion relation (1.42), is based on the method of 
Reflection and Transmission coefficients and it has been first implemented by ( 
Kennet, 1974) and successively modified by several researchers (Luco and 
Apsel, 1983, Apsel and Luco, 1983, Chen, 1993, Lai 1998) and finally properly 
improved by the Author. The Rayleigh dispersion relation is obtained setting a 
complex function equal to zero. In order to find the zeros of this complex 
function, the frequency is kept constant and the wave numbers, that make the 
absolute value |R| of this complex function equal to zero, are searched 
 

0|),,,,,(| =fkhVsR iiii ρν  11 +÷= ni     (1.51)  
 
Actually the code fails in finding the roots in some particular conditions for 
certain frequencies. As a consequence Rayleigh modes appear to be 
discontinuous, as documented and justified by ( Lai, 1998). This mistake 



              _________      Chapter 1: Wave propagation in elastic solids___________________ 

 25

causes a wrong evaluation of all the modal quantities, hence the code does not 
work correctly in these cases and the results are not faithful. The jumps in 
modal curves usually happen when the medium is characterized by an irregular 
stiffness profile, that is the stiffness does not increase monotonically with 
depth, but there is at least one softer layer trapped between two stiffer ones.  
Consider for example the system indicated as case B, which is described in 
table 1.3: 
 

Layer Thickness h(m) Vp (m/s) Vs (m/s) Mass density (Kg/m3) 
1 5 400 700 1800 
2 3 300 500 1800 

Half-space ∞ 450 800 1800 
 

Table 1.3: Characteristics of the system for the case B. 
 

 
Figure 1.14: Failure of the original code in finding Rayleigh modes 
 
The code fails in searching the modes, since the phase velocity of the 1st mode 
is not found for frequencies greater than f =103Hz and its value is taken equal 
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to the phase velocity of the 2nd mode, so that a jump  or sharp discontinuity 
exists, which is transferred to  all the higher modes (fig.1.14). 
This problem exists even at higher frequencies. This is due to the particular 
shape of |R|. Looking at the fig.1.15 there are three wave numbers for which 
|R|=0 at the frequency f =103 Hz: k4=1.46 1/m, k3=1.63 1/m, k2=1.75 1/m. In 
correspondence of all these zeros |R| is not a  regular function, in fact these are 
spire points. It is not said that the function |R| has got a regular tendency inside 
the ranges delimitated by its zeros, in fact between k3=1,6 1/m and k2=1,75 1/m  
|R| has another spire point on its relative maximum. The most interesting aspect 
is that the function |R| has got a discontinuity at k1=1,9 1/m (fig.1.15), that 
seems to be a vertical asymptote (fig.1.16), , despite it is derivable and concave 
and appears regular for k>k2. 
 

 
 
Figure 1.15: Roots of Rayleigh dispersion Relation for f=102Hz (case B) 
 
As the wave number approaches the value  k1=1,9 1/m, the function |R| shows 
two branches: the one on the right respect to k1 goes to zero, the one on the left 
side goes to a great value, probably to infinity. 
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Figure 1.16: Vertical asymptote in correspondence of the fundamental root of 
the Rayleigh Dispersion Relation at a frequency f=102Hz. 

Figure 1.17: Absolute value of the Rayleigh Dispersion Relation at the 
frequency f=115Hz for case B 
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It is worthy to observe that at the frequency f=103 Hz the root k1=1,9 1/m is 
still found, but at greater frequencies, for example at f=115 Hz, the subinterval 
∆k used for the search is not sufficiently small to find that zero. To solve this 
problem we need to reduce the subinterval ∆k so that the discontinuity will be 
found (fig.1.17). With a zoom around the discontinuity, it can be realized 
(fig.1.18) that the discontinuity is again  characterized by a vertical asymptote 
with two different branches around it. 
We want to give an idea how much the subinterval ∆k needs to be reduced to 
find all the zeros. The initial number of points used to obtain ∆k is NUM=200, 
with ∆k=(kmax-kmin)/NUM. With NUM=103 at f=134 Hz the discontinuity is 
not visible yet. Only by both increasing NUM=104 and reducing ∆k to 
∆k'=(2,7-2,6)/104 = 10-51/m, it is possible to see the discontinuity. 
After studying several systems for different frequencies, it can be said that as 
frequency increases, |R| has got more than one zero characterized by a 
discontinuity and it does not seem possible at the moment to establish a priori 
which zero needs a smaller subinterval ∆k to be found. In fact it might happen 
that the 1st and 3rd modes jump at some frequencies for a fixed ∆k, but the 2nd 
and higher modes do not, instead the 2nd mode might have a discontinuity 
stronger than the 3rd mode at different frequencies. 
In other words the discontinuity of the generic mode jth is more or less sharp 
compared to that one of the other modes, depending upon the frequency. 
To solve the problem of mode-jumps we need to find out the discontinuity near 
the root. At the moment a well known strategy of establishing the order of 
appearance of such discontinuities is not available, nevertheless an automatic 
procedure to correctly find the roots has been developed. 
The code has got some disadvantages as it needs large time to exactly find all 
the roots for every kind of medium. It is important to underline that the wave 
number root of the Rayleigh Dispersion Relation must be found with high 
accuracy (∆k=1012 1/m), otherwise at frequencies sufficiently high, modal 
quantities like group velocity and displacement amplitude show an  irregular 
and not reliable tendency due to any numerical instability. In fact the group 
velocity is evaluated by calculation of energy integrals, that are of the order of 
10-12 for certain frequencies, hence a small inaccuracy in the wave number 
causes the group velocity to considerably change. Because the group velocity 
appears at the denominator of the displacements the mistake is transferred as a 
consequence. After solving the problem of the jumps, the real modal curves 
can be plotted. For the case B the Rayleigh modes are reported in fig.1.19. It is 
clear that the behavior of the modal curves are now reliable and continuous.  
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Figure 1.18: Two branches of the Rayleigh Dispersion Relation at the 
frequency f=115Hz  in correspondence of the 1st root. 

 
Figure 1.19: Correct Rayleigh Modes for case B. 
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Before concluding this paragraph the author wants to make some 
considerations about the existence of the jumps in the function absolute value 
of the complex Rayleigh dispersion relation |R|. Even if, neither a mathematical 
explanation nor a physical sense have be given yet, in the opinion of the author 
the discontinuities are not purely due to the way the Rayleigh dispersion 
function has been built. Evaluating the same function |R| by means of the 
Stiffness Matrix method, similar results have been found, since the function |R| 
shows an infinite value for certain frequencies. It seems that the same problem 
has been encountered by other researchers, who have not reached yet an 
agreement about the meaning of such behavior ( H.R. Hermann, 2000). 
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1.5 Waves generated by a vertical point source on the free surface 
 
Up to now we have not specified how the several types of waves had been 
generated and we have limited the discussion to time harmonic plane waves. 
In fact the treatment  of the Rayleigh waves has been conducted under the 
hypothesis that no external forces had been applied on the system. 
Now we want to know what happens when an external load, say a vertical 
point source, is applied on the free surface of the half-space. About this 
issue a huge number of references can be found in literature (Lamb, 1904, 
Ewing et al, 1957, Achenbach, 1999, Richart et al, 1970), so we will give a 
brief remind of the basic concepts. 
Consider as first case a time harmonic vertical load acting on a circular 
footing on the free surface of a homogeneous linear elastic, isotropic half-
space (see fig.1.20). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.20: Waves generated by a vertical time harmonic load on a 
circular footing on the free surface of a homogeneous half-space(a) and 
energy distribution among them(b) for a Poisson ratio ν=0.25.(Richart et al., 
1970). 
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As it can be seen from the figure, spherical P and S waves spread out from 
the point source, followed by Rayleigh waves, that propagate along 
cylindrical wave-fronts. The different shape of the wave-fronts causes a 
different geometrical attenuation of the amplitudes associated to body and 
Rayleigh waves. In fact the energy density e is proportional to the amplitude 
square: 
 

2Ae ∝          (1.51) 
 
and if no material dissipation exists, the amplitude of Rayleigh waves 

decays as 
r

1 , instead body waves attenuate as 
r
1 , where r is the distance 

from the source. Also the distribution of the energy input by the external 
load is not equal among P, S and Rayleigh waves, but Rayleigh waves take 
about one third of the total energy depending on the Poisson ratio. 
These are the reasons for which in the far field the main contribution to the 
displacement field on the free surface is given by Rayleigh waves and the 
effects of body waves can be neglected. This is one of the reasons for which 
only the contribution of the Rayleigh waves is considered in theinversion 
procedure proposed in this research.  
 

 
Figure 1.21: Head Waves between P and S wave fronts. 

 
Since an external load is applied, the mathematical problem associated to 
the physics of the system is not any more a homogeneous eigenvalue 
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problem and it can be demonstrated that the total displacement field due to 
Rayleigh waves can be expressed in terms of a proper combination of all the 
Rayleigh modes of vibration, found in the previous section (Aki and 
Richards, 1980). 
Actually the elasto-dynamic theory, in the case of a transient vertical line 
load, predicts the existence of head waves on the free surface of a 
homogeneous half-space, so that P waves can satisfy the stress free 
boundary conditions. As shown in fig.1.21, head waves are comprised 
between the wave-fronts of P and S waves  (Achenbach, 1999).   
If an impulsive point load is considered, under the assumption that the super 
position principle holds, it can be decomposed into its harmonic components 
and the final response can be obtained by means of the Fourier’s theorem. 
In the case in which the half-space is not homogeneous, but it presents a 
stack of horizontal layers, all the complications due to multiple reflections 
and refraction and mode conversions arise. We only anticipate that, under 
suitable conditions, concerning the stratigraphy and the position of the table 
water, refracted or head waves and, with more difficulty, reflected waves 
can be discerned and usefully utilized in seismic reflection and refraction 
methods to infer information about the site properties. To this issue is 
dedicated the Chapter 2. 
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Chapter 2 
 
 
 

Soil Characterization using Surface Waves 
 
 
 

Introduction 
 
This Chapter starts with a short remind of the seismic methods widely used 
in geophysical field for soil characterization. Then a historically ordered 
perspective about the surface wave techniques, used in the geotechnical 
scale, will precede  the more advanced procedures, developed nowadays for 
the evaluation of both the experimental and the theoretical dispersion 
relation of Rayleigh waves. After comparing the different techniques, the f-
k method, based on a multi-sensors array, will be discussed as tool for 
determining the dynamic soil properties Vs and Ds. At the end a new 
procedure will be proposed, for computing the theoretical apparent 
dispersion relation. The new method is consistent with the experimental f-k 
technique, used to determine the experimental dispersion relation, and offers 
some advantages for an automatic inversion procedure, that will be 
presented in the next Chapter 3. The last part of the Chapter 2 is devoted to 
the frequencies and the wave numbers of resonance of a layered half-space 
for travelling Rayleigh waves. In particular a sensitivity analysis has been 
conducted for the case of a single layer resting on the half-space and a 
simple formula has been found, that correlates the frequencies and the wave 
numbers of resonance to  geometrical and mechanical properties of the 
system. 
 
 
2.1 Seismic Reflection and Refraction methods 
 
In Chapter 1 we have said that the existence of the interfaces into a layered 
half-space is the cause of reflections and refractions of incoming waves. For 
this reason all the possible contributions to the displacement field generated 
by an impulsive vertical surface source are found on the free surface in the 
time-space domain. Two techniques, that are well known to geophysicists, 
are the seismic reflection and refraction methods. 
 The refraction method consists of recognizing the first arrivals of both the 
direct waves and the refracted waves. The basic assumption is that the 
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second layer has got a wave velocity greater than the first one, so that after a 
certain time (or distance xc) the refracted waves, that travel through the 
second layer, anticipate the direct waves (fig.2.1): 
 

 
Figure 2.1: Seismic Refraction method: refracted P wave detected at the 
free surface(a) and time-space representation of the first arrivals (b).(Richart 
et al, 1970). 
 
It is straightforward to evaluate the thickness H and the velocities V1 and V2 
from the slope of the two curves in fig.2.1b, once direct and head waves 
have been clearly individuated in the time-space representation. This kind of 
test can be performed using either P or SH waves, and there are some  
limitations, due to the presence of a stiffer layer or if a thin layer overlies a 
very stiff layer. In the case a stiffer layer exists, no information can be get 
from layers deeper than that, because refracted waves below the stiff layer 
travel more slowly than the waves through the stiff layer. When a thin soft 
layer overlies a very stiff layer, it may happen that the refracted waves from 
the stiffer layer anticipate the refracted waves travelling through the soft 
layer, so that the last one is hidden. When working with P waves an 
additional limitation is represented by the position of the water table. The 
water table does not allow to measure the so called 2nd P wave velocity, 
associated to the skeleton as predicted by ( Biot, 1956), if the 2nd P wave 
velocity is less than the velocity of the 1st P wave into the water. Hence the 
1st P wave is the only one revealed at a depth greater than the water table 
(see fig.2.2). In fact the 2nd P wave travels through the skeleton at a lower 
speed and arrives after the 1st P wave, that travels through the fluid and 
covers the first arrivals of the 2nd P wave. This limitation on the other hand 
allows for recognizing the existence and the position of the water table. 
Obviously these circumstances are true only if the skeleton is less 
compressible than the fluid, as it is the case in most of the soils. 
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Figure 2.2: Body wave velocities in saturated soils: P waves of the first and 
second kind and S wave. (Richart et al., 1970). 
 
Nevertheless it may happen that the 1st P wave through the fluid be slower 
than the 2nd P wave through the skeleton, as it occurs for some rocks. In this 
case the presence of the water table does not represent an obstacle for soil 
characterization, provided that no softer layers are between the water table 
and the bedrock. 
The reflection method is based on the measurement of the first arrivals of 
the reflected waves. Usually the reflected waves have an hyperbolic path in 
the time-space domain (see fig.2.3), but they are not easily recognizable 
among the contributions of all the other kinds of waves and they are never 
the first arrivals at the receivers. In fig.2.4 an example of displacement field 
is presented, caused by an out-plane SH source. All direct and reflected and 
refracted waves are present, included Love waves.(Rix, 2000-a) 
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Figure 2.3: Direct, reflected and refracted waves in time-space domain 
(Rix, 2000-a). 
 
In the following the interest will be concentrated on the possibilities that 
Rayleigh waves offer, to overcome some of the difficulties and the 
limitations of seismic refraction and reflection methods, as a complementary 
non-invasive tool for soil characterization. 
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Figure 2.4: Displacements field on the free surface generated by a 
horizontally source on the free surface. Refracted and reflected as well as 
Love waves can be recognized (Rix, 2000-a). 
 
2.2 Historical Review of SASW procedures 
 
The interest towards surface waves for the determination of dynamic soil 
properties dates back to the attempts made by Jones in 1950’s (Jones, 1962) 
and Ballard (Ballard, 1964). Jones developed the so called Steady-State 
Vibration method, but it was onerous and prohibitive in terms of time. Only 
in the earlier 1980’s some researchers of the Texas Department of 
Transportation suggested the Spectral Analysis of Surface Waves (SASW) 
method, (Heisey et al. 1982, Nazarian and Stokoe, 1984 ) that has been 
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continuously improved, due to the attracting advantages and business 
purposes in engineering applications of this non-invasive method. 
 
2.3 Steady-State Vibration Technique 
 
The Steady-State Vibration method is based on the use of a time harmonic 
source, that is put on the free surface of the site under investigation.  

 
 
Figure 2.5: Steady-State Method for the experimental evaluation of the 
dispersion relation (Hebeler, 2001, Joh, 1996). 
 
The goal is to move two displacements sensors on the free surface until the 
signals detected at the two sensors are in phase. As it is illustrated in fig.2.5, 
one sensor is held fixed and the second one is moved along the surface to 
find the in-phase points. 
The idea behind this procedure is that the distance between two in-phase 
points corresponds to the wavelength of the signal at the frequency of 
excitation, so that the experimental phase velocity can be easily evaluated 
by using the formula: 
 

fc ⋅= λ          (2.1) 
 
It is implicitly assumed that for each frequency of excitation the system 
responds with a harmonic perturbation characterized by only a wavelength, 
that is the one experimentally measured. Actually in Chapter 1 it was shown 
that several modes can propagate through the system for the same 
frequency. It means that the wavelength experimentally calculated can either 
coincide with one mode or more probably to a combination of all the modes 
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together. This aspect will be considered afterwards more deeply, since it 
represents a key aspect in the inversion procedure. 
By measuring all the in-phase points at different frequencies a graph can be 
plotted, that enables one to accurately evaluate the wavelength (fig.2.6a). 
Once the apparent wavelength has been measured, the experimental 
apparent dispersion relation can be represented in terms of the phase 
velocity varying with the wavelength (fig.2.6b). In the represented case the 
phase velocity always increases with the wavelength, hence the 
correspondent site is normally dispersive, in the sense explained in section 
2.4.1. The final step of the method consists of determining the shear wave 
velocity profile by means of the phase velocity profile. An empirical rule is 
adopted, that associates a shear wave velocity  to a phase velocity: 
 

RcVs ⋅≅ 1.1         (2.2.a) 
 
where cR is the experimentally measured Rayleigh phase velocity. The depth 
z, corresponding to the shear wave velocity, is evaluated from the 
wavelength λ of the phase velocity cR: 
 

λ⋅÷= )25.1(z         (2.2.b) 
 
In this way a direct correspondence is created from the dispersion profile 
(fig.2.6b) and the shear wave velocity profile (fig.2.6c). 
It has been shown that this approximation holds very well for homogeneous 
sites and when the stiffness gradually increases with depth (Ballard, 1964), 
but when these conditions do not exist the method gives unreliable results 
(Rix, 1988). 
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Figures 2.6a, b, c: Determination of the experimental wavelength (a), phase 
velocity (b) and shear wave velocity profile (Hebeler, 2001, Joh, 1996). 
 
The reason why this method fails with irregular stiffness profiles is that the 
modal shape of the displacements, associated to the first Rayleigh mode for 
such cases, is not the same as in normally dispersvie profiles, but changes 
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with frequency. As it will be explained in the sequel, the higher modes 
become important in different ranges of frequency, so that the first mode is 
not always predominant for all the frequencies and a simple correspondence 
between the two graphs in fig.2.6b and fig.2.6c is not valid anymore. 
 
 
2.4 Spectral Analysis of Surface Waves Method 
 
  In 1980’s a great impulse has been given to the future use of the surface 
waves for geotechnical tests by Stokoe and his co-workers (Heisey et al, 
1982, Stokoe II et al, 1988, Nazarian and Stokoe II, 1984, Nazarian, 1984, 
Sànchez-Salinero, I., 1987). They tried to overcome the disadvantages 
presented by the Steady-State vibration method by means of the more 
powerful devices for signal analysis and the use of the Fourier 
Transformation. A huge gain in terms of time can be reached by using an 
impulsive source, that generates several frequencies at the same time. Then, 
thanks to the Fourier Transformation of the signal, information can be 
obtain about the frequencies contained by the travelling disturbance. The 
idea is to detect the perturbation at two stations on the free surface and then 
to calculate the phase shift between the signals y1(t) and y2(t), measured at 
the two receivers, to be used for experimental phase velocity evaluation. 
Initially an impulsive source was used to generate the perturbation and a 
couple of receivers to detect it, collocated according to two different 
schemes . The first one is the Common Source array (see fig.2.7), instead 
the second one is the Common Receiver Midpoint array (see fig.2.8).  
It has been experimentally proven (Sanchez-Salinero, 1986) that by 
assuming the same distance between the first receiver and the source and the 
two receivers, i.e. d1=d2, the phase velocity shows a smoother  behavior, 
without fluctuations, typically found with other configurations. 
The Common Receiver Midpoint fig.2.8 array is usually preferred, because 
the position of the source respect to the receivers is reversed and it is 
believed that the disturbing effects due to horizontal irregularities and 
bending inclination can be mitigated. 
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Common Source Array

d2

d1

d2
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Figure 2.7: Common Source array in the SASW test (Hebeler, 2001). 

 

Common Receiver Midpoint Array
CL

 
Figure 2.8: Common Receiver Midpoint configuration with source reversed 
in SASW test (Hebeler, 2001). 
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From the recorded signals y1(t) and y2(t) at the two receivers the following 
quantities can be calculated: 
 

)]([)( 11 tyFFTfY =        (2.3a) 
 

)]([)( 22 tyFFTfY =        (2.3b) 
 
which are the Fast Fourier Transformed of the signals in time domain, then 
the Auto Power Spectra: 
 

)()( *
1111 fYfYG ⋅=        (2.4a) 

 
)()( *

2222 fYfYG ⋅=        (2.4b) 
 
and the Cross Power Spectrum (2.5) and the Coherence function (2.6) 
 

)()( *
2112 fYfYG ⋅=        (2.5) 
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The Auto Power Spectra give an estimate of the energy contained into the 
signals taken independently, the Coherence measures the existing 
correlation between two different signals and indicates the goodness of the 
signal to noise ratio. The Coherence varies from 0 to 1, depending on the 
quality of the detected signals. If the Coherence is near 1 it means that the 
measured signals are very well correlated, but several factors, as body wave 
interference, noise, spatial variability may cause the value of the Coherence 
be sensibly lower than 1. Finally the phase of the Cross Power Spectrum 
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 represents the phase shift between the signals at the two stations and it is 
used to calculate the phase velocity as: 
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∆Φ
∆⋅= xffc π2)(         (2.8) 

 
where ∆x is the distance between the two receivers and f is the frequency at 
which the phase velocity is calculated. 
In fig.2.9 a view of all the quantities above defined is given for the real site 
Shelby Forest in USA (G. Hebeler, 2001). 
The assumption behind this procedure is the same used in the Steady-State 
Vibration method, i.e. the disturbance measured between the two stations is 
assumed to be characterized by a constant apparent wavelength, so that  the 
same simple harmonic form can be associated to the two signals recorded at 
the two stations. In reality this is not completely true, since a wave train  
with different wavelengths is generated at the time the impulsive source 
impacts. As a consequence waves with different wavelengths can be found 
between the two stations, depending on the distance between the two 
receivers and the distance from the source. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9: Phase of the Cross Power Spectrum, Coherence function and 
Auto Power Spectra at Shelby Forest for a spacing of  7ft between the 
receivers (Hebeler, 2001). 
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What happens is that the measured wavelength and hence the calculated 
phase velocity depends on the position of the two receivers and only a part 
of the whole frequency range 1Hz-100Hz can be explored for an assigned 
configuration. This means that, in order to have an experimental phase 
velocity in a wide range of frequencies, more configurations must be 
chosen, accordingly with different types of source. It is well known in fact 
that hammers generate perturbations relatively rich of high frequencies (i.e. 
short wavelengths) and big weights produce disturbances with small 
frequencies (i.e. long wavelengths). The results of such a phenomenon are 
clearly reported in fig. 2.10, where several estimations of the phase 
velocities have been plotted for different distances between the receivers. 
The next step is to average the several pieces of experimental curves at 
those frequencies where they overlap, in order to get only one averaged 
experimental dispersion curve. In fig.2.11 the composite curve is 
represented made by means of all the pieces of dispersion curve, obtained 
with different configurations and the averaged experimental curve is also 
shown. Finally a reduced number of experimental points must be selected, 
to be used in the computationally expensive inversion process. This 
operation does not influence much the accuracy of the inversion process, 
since it has been proved (Yuan and Nazarian, 1993) that, increasing the 
number of points beyond approximately (0.5 - 1.0)N, where N is the number 
of the unknowns, only increases the computational cost of the inversion, 
without adding information to the dispersive characteristics of the medium.    
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Figure 2.10: Standard SASW method: pieces of dispersion curve for 
different configurations at Shelby Forest site (Hebeler, 2001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.11: Composite and Averaged experimental dispersion curves (G. 
Hebeler, 2001) 
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It is evident that the averaged dispersion curve represents an improvement 
respect to the original pieces, but it is still rough and it is anyway the result 
of an averaging process. This means that in the inversion procedure this 
arbitrary averaging process will increase the non-uniqueness of the 
stratigraphy, since detailed information is lost. 
The standard SASW test as described above shows some drawbacks such 
as: goodness and quality of the measurements need to be established looking 
at the coherence function; unwrapping of the phase of the Cross Power 
Spectrum; limited number of stations for measurement; need of averaging 
process; a quite rough final experimental dispersion curve. 
In order to overcome these disadvantages, other techniques have been 
improved, such as the active and the passive f-k methods, just well known to 
geophysical researchers and based on  multi-channel gathering of data. 
Before introducing the f-k methods, a section will be dedicated to explain 
the distinction between normal dispersion and inverse dispersion, that has 
important consequences in the inversion problem of the dynamic soil 
characteristics. 
 
2.4.1 Normally and Inversely dispersive systems 
 
In Chapter 1 we have defined both the phase velocity and the group 
velocity. When a system is dispersive, that is the phase velocity is a non 
constant function of the frequency, then the phase velocity and the group 
velocity are not equal. If the phase velocity is greater than the group 
velocity, the system is said normally dispersive. Instead, if inside any range 
of frequency the phase velocity is less than the group velocity, the system is 
called inversely dispersive. For example, the waves travelling on the surface 
of the water are subjected to normal dispersion. In fact the ripples propagate 
quickly, with a speed equal to the phase velocity and pass through the big 
beats of waves, that travel more slowly with the group velocity. The 
fig.2.12a and fig.2.12b clearly put in evidence the two situations, in which 
the system is normally or inversely dispersive. 
In the first case (fig.2.12a) the phase velocity is greater than the group 
velocity, hence the wavelets inside the groups propagate through the groups, 
passing in front of them. In the inversely dispersive case (fig.2.12b) the 
wave-packets are faster than the wavelets, that are left back by the wave-
packets. As a result, after the same amount of time, in the normally 
dispersive case the space covered by the crest is greater than the distance 
covered by the peak of the wave-packet. In the inversely dispersive case the 
situation is reversed.  
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Figures 2.12a, b: Normal and Inverse Dispersion Phenomenon 
    (Pojul, 2000 ). 
 
 
As it has been showed at the beginning of this chapter, it is possible to 
evaluate an experimental dispersion relation associated to a site, by means 
of the motion of the particles, measured on the free surface of the site. In 
particular different procedures have been reminded for the experimental 
calculation of the dispersion relation, for example in terms of the phase 
velocity. 
For a layered half-space either normal or inverse dispersion may occur, 
depending on the stiffness variation with depth. When the stiffness 
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gradually increases with depth the system is normally dispersive and the 
experimentally measured phase velocity always decreases with frequency 
(i.e. increases with the wavelength, fig.2.13a). When the stiffness varies 
irregularly with depth, i.e. softer layers trapped between stiffer ones or vice 
versa stiffer layers trapped between softer ones, then the system shows an 
inversely dispersive behavior and the experimental phase velocity changes 
as shown in fig.2.13b(Rix, 2000-a).  
 
 
 

 
Figures 2.13a, b: Normally and inversely dispersive layered half-spaces  
   ( Rix, 2000-a). 
 
Now an essential aspect that needs to be underlined is that only one 
dispersion relation can be obtained by means of experimental 
measurements, instead we have seen in Chapter 1 that from the theory of 
wave propagation several modes of Rayleigh may exist. Actually it will be 
shown in the following that sometimes more than one experimental curve 
can be extracted from measured data, under proper conditions. Anyway the 
real core of the inversion procedure for determining the dynamic soil 
properties is the way the theoretical apparent or effective dispersion curve is 
evaluated. The reason is that the usually employed technique, followed to 
infer the characteristics of the site is to vary the properties of the system, 
starting from an initial guess and trying to minimize the distance between 
the experimental and the theoretical response functions of the system. The 
choice of the response function is fundamental, but once it is done and 
before running the optimization procedure, the main role is played by the 
forward simulation, that gives the theoretical apparent curve. The terms 
apparent or effective comes out from the fact that the experimental 
dispersion relation is what we can see from real experiments (Gucunski and 
Woods R.D., 1991-a, Gucunski and Woods, 1991-b, Gucunski and Woods, 
1992, Tokimatsu, 1995), because of several factors: the number of receivers 
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and their spacing; the total distance investigated by the array of receivers, 
the properties of the site. Therefore one open issue remains how either to 
generate a theoretical apparent curve or to experimentally measure well 
separated  Rayleigh modes. About the separation of Rayleigh modes during 
the propagation, more details will be given in Appendix B. 
At a geotechnical scale of interest it is very difficult to have a separation of 
the Rayleigh modes, since a quite detailed stratigraphy in the upper 30m-
50m is desired and hence the maximum covered distance on the free surface 
is always less than 50m and only exceptionally reaches 100m. So the only 
way to account for all the modes of  Rayleigh, given the limited number of 
receivers, is to generate an apparent dispersion relation. Until now two main 
classes of strategies have been followed. The first one is the so called 2-D 
method, where only the fundamental mode of Rayleigh is considered and all 
the higher modes are ignored. The second one is named the 3-D method and 
it completely simulates the SASW test previously described, taking into 
account all types of waves generated on the free surface by a point 
impulsive source (Ganji et al., 1998, Joh. 1996). 
The 2-D method is by far the simplest one and it allows to save a lot of time, 
but it gives good results only for normally dispersive sites, because without 
doubts it fails when dealing with inversely dispersive systems ( Tokimatsu 
et al., 1992-a ). The 3-D method is obviously more rigorous, since it 
considers both all the higher modes of Rayleigh and body and head waves 
on the free surface. Actually the 3-D method enables one to theoretically 
evaluate the displacements at the two receivers of the SASW configuration 
and to repeat all the steps followed in the experimental test. Of course this 
means a huge amount of time needed and it is too expensive in terms of time 
in view of an inversion procedure. As a consequence a lot of efforts have 
been done to overcome the problems of the 2-D method, keeping at the 
same time the advantages offered by the 3-D method. An interesting 
solution has been recently proposed by Lai (Lai, 1998, Lai and Rix,1998), 
that provides an apparent or effective theoretical phase velocity. 
 
 
2.5 Effective Phase Velocity 
 
As just said in section 2.1 (it will be further explained in section 2.6) when a 
vertical impulsive point source is applied on the free surface of a layered 
half space, in general several types of waves are generated. First of all P and 
S waves spread away from the source with spherical wave-fronts , followed 
by Rayleigh waves along cylindrical wave-fronts, together with head waves 
and reflected waves. Assume for the moment to have been able to 
experimentally isolate Rayleigh waves from all the other waves ( in a 
certain manner this is provided by field transformations and separation of 
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different events as explained later in section 2.6). Now it is a fact that a 
global displacement field results from the contributions of all the Rayleigh 
modes of propagation and in the simple case of  time harmonic source we 
can write (Aki and Richards, 1980, Lai, 1998): 
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in which β indicates either the vertical or the horizontal component of 
motion, j denotes the generic j-th mode, M is the total number of modes, kj 
is the wave number corresponding to the j-th mode for the given frequency 
of excitation ω, zs is the source depth, ϕβ is a phase shift equal to ±π/4 
according to β, Aj is the modal amplitude of the modal displacement, vj and 
Uj are the modal phase and group velocities, F0 is the amplitude of the 
vertical harmonic force, Ij is the first energy integral and r1, r2 are the 
eigenvectors as they are defined in ( Lai, 1998). 
This is true if the superposition principle holds, as it is the case, since we 
assume an elastic behaviour of the material, because of the small range of 
deformations we deal with. 
Each modal component independently satisfies the equations of motion, so 
each mode can represent an independent simple wave, that travels 
independently from the other modes, with its own phase and group 
velocities. As it has been explained in Appendix B, the energy associated 
with the generic mode propagates with the group velocity, instead the modal 
phase advances with the phase velocity. 
Lai and Rix (1998) had the brilliant idea to think of all the modes as a global 
disturbance, characterised by an effective phase velocity. If we take the 
imaginary part of the complex displacement (2.9)( we could have taken 
even the real part without any substantial change in the results), we have 
(Lai, 1998): 
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in which the amplitude and the spatial part of the phase are written below: 
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If we want to consider the locus of all the points that have constant phase, 
we must set the total phase equal to a constant: 
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Then if Ψβ is smooth enough to admit partial derivatives, we can 
differentiate respect to time and obtain: 
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Now if we observe that the frequency of excitation ω does not vary with 
time and we assume that the propagation occurs along r only, not along z, 
then we have: 
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that is the so called effective or apparent phase velocity. For an explicit 
expression the reader is referred to (Lai, 1998). 
The result just obtained needs some comments. Above all the physical 
picture to keep in mind is made of several simple waves, that coincide with 
the Rayleigh modes in the case of time harmonic source. All the modes 
spread away from the point source with cylindrical wave-fronts at different 
speeds. Precisely their amplitudes propagate with the modal group 
velocities, instead their phases with the modal phase velocities. As the time 
passes, the disturbance separates out into a longer and longer train, made of 
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independent waves with different wave numbers. Before the separation of 
the Rayleigh modes, they are still together and a simpler way to look at 
them is to consider an equivalent complicate wave, whose effective or 
apparent phase velocity is given by (2.17). It should be more meaningful to 
obtain the expression of the apparent group velocity associated to the global 
perturbation. This quantity should give an estimate of the speed at which the 
perturbation travels, when considered as an whole. Of course this picture 
holds, if the dispersion has not significantly occurred yet, otherwise it would 
be more appropriate to consider the modes independent and separated.  
As a consequence of this dispersion phenomenon the effective or apparent 
phase velocity depends on the distance r covered by the disturbance. Again 
this is reasonable, if we think that during the propagation the different 
modal components travel at different velocities inside the wave train, that 
gradually expands and moves with a speed that varies in space and time. In 
the opinion of the author the apparent phase or apparent group velocities do 
have physical meaning, because they represent an equivalent manner to look 
at the travelling disturbance, just as it appears time after time along its path. 
The new concept of the apparent phase velocity offers the advantages of the 
3-D methods, because all the higher Rayleigh modes are taken into account. 
The effective phase velocity can also be entirely evaluated from the 
homogeneous eigenvalue problem presented in Chapter 1 and finally 
analytical expressions of the partial derivatives of the effective phase 
velocity respect to the properties of the system have been found by Lai and 
Rix (1998). The availability of the partial derivatives is very useful in the 
inversion procedure, since it allows for time saving and more stability 
respect to the partial derivatives numerically calculated. 
Another aspect, that deserves to be mentioned, is that the effective phase 
velocity described by formula (2.17) defines a surface in the frequency-
space domain, so it is more correct to speak in terms of dispersion surface, 
rather than in terms of dispersion curve. On the other hand this feature 
represents a problem, because an arbitrary averaging process among all the 
receivers is necessary, in order to obtain a dispersion curve. 
In this research a different approach has been chosen, based on the 
frequency-wave number analysis, just widely used in geophysical field and 
introduced in recent years for geotechnical investigation by some 
researchers (Foti, 2000, Tokimatzu, 1995, Hebeler, 2001, Zywicky, 1999). 
 
 
2.6 F-K Method 
 
Consider the global wave field generated on the free surface of a site by a 
point source, applied on the same free surface. As just said at the end of the 
Chapter 1 and in section 2.1 about seismic methods, several types of waves 
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can be found on the free surface. This aspect really constitutes a problem for 
the discernment of reflected and refracted waves for the application of the 
corresponding techniques. For this reason in geophysical applications it is 
necessary to filter the total wave field from disturbing scattered waves, 
guided waves, Rayleigh waves, that are called ground roll. In order to solve 
this problem several strategies have been developed, mostly based on the 
wave field transformation. 
The f-k method consists of transforming the measured wave field from the 
time-space domain of acquisition to the frequency-wave number domain. 
This double transformation can be performed by means of a 2D Fourier 
transformation, one from time to frequency and the other from space to 
wave number. The reason of such a transformation in analysing the  
measurements, collected on the free surface of a site, is that in the 
transformed domain it is easier to discern all kinds of waves and separate 
the so called ground roll from noise or from reflected and refracted waves. 
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In fact a separation of the different events exists in the frequency-wave 
number domain, as it is explained in fig.2.14, where the reflected waves are 
found near the frequency axis, instead the ground roll is close to the wave 
number axis. 

 
Figure 2.14: Separation of different events in the frequency-wave number 
domain (Doyle, 1995 ). 

 
Now the interesting feature is that the ground roll is mainly constituted by 
Rayleigh waves, hence the f-k method represents a powerful tool to isolate 
the Rayleigh waves from the global wave field and it can be successfully 
used to experimentally estimate the Rayleigh dispersion relation (Foti, 2000, 
Zywicki, 1999, Gabriels et al., 1987). Let now briefly explain the basic 
concepts behind this method. 
Consider the wave field generated on the free surface of a site expressed in 
the time-space domain as (McMechan and Yedlin, 1981): 
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where N(k,ω) is a function of the exciting source and R(k,ω) is the Rayleigh 
dispersion relation discussed in Chapter 1. In Appendix C the term R(k,ω) 
has been explicitly written for the particular case of an impulsive point 
source, applied on the free surface of a layer resting over a half-space. 
By applying a 2-D Fourier transformation from time to frequency and from 
space to wave number the frequency-wave number representation of the 
wave field is obtained: 
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From (2.19) it is immediate to realize that the relative maxima in the 
amplitude of the spectrally decomposed wave field are reached for those 
pairs of frequencies and wave numbers, that make the Rayleigh secular 
function equal to zero: 
 

0),( =ωkR          (2.20) 
 
This is the Rayleigh geometrical dispersion relation and its solutions have 
just been discussed in Chapter 1. 
In the paper by McMechan and Yedlin (1981) a similar observation has 
been made on the transformed wave field from time-space domain to 
slowness-frequency domain, but it must be underlined that when R(k,ω)=0, 
it is not said that the wave field goes to infinity as they have assessed. There 
is no justification for an infinite value of the wave field, because even in 
absence of material dissipation of energy, the spreading of the energy and its 
transmission towards deeper layers assure finite peaks in the spectrum. A 
mathematical explanation is that the numerator N(k,ω) also approaches to 
zero in correspondence of the Rayleigh modes, so that the wave field 
remains of finite amplitude. In fact experimental and numerical simulations 
support this consideration (see fig.2.29). 
It is necessary to clarify some aspects about the f-k method. In the formula 
(2.18) the wave field should rigorously be expressed in terms of the 
displacements, since as it is shown in Appendix C the peaks in the spectrum 
of the displacements give the Rayleigh dispersion relation. Nevertheless, by 
means of some assumptions, it can be easily demonstrated that, the way the 
peaks in the spectrum are searched, the dispersion curve does not vary, if the 
spectra of the energy or displacements or velocities or accelerations are 
used. 
In the frequency-wave number domain the magnitude of the energy 
spectrum E(k,ω) can be correlated in a simplified manner to the magnitude 
of the displacement spectrum S(k,ω) as: 
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If at each fixed frequency ω0 we look for the wave number, at which the 
energy spectrum is maximum, the following condition for the existence of 
any stationary points must be imposed: 
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From (2.23) it can be seen that the maxima and the minima in the wave 
number domain are the same in the spectra of the displacements and the 
energy. 
If we assume that the following relationships hold in the frequency-wave 
number domain among the spectra of the displacements S(k,ω), the 
velocities V(k,ω) and the accelerations A(k,ω): 
 

Physical 
quantity 

|S(k,ωωωω)| |V(k,ωωωω)| |A(k,ωωωω)| 

|S(k,ωωωω)| - |V(k,ω)|⋅ω |A(k,ω)| ω2 
|V(k,ωωωω)| |S(k,ω)|/ω - |A(k,ω)| ω 
|A(k,ωωωω)| |S(k,ω)|/ω2 |V(k,ω)|/ω - 

 
 
Table 2.1: Relationships among the magnitude of the spectra for the 
measured signals. 
 
Then it becomes easy to realize that the wave numbers, that define the 
dispersion curve and correspond to the peaks in the spectra are the same: 
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The key aspect is that in the spectra only the position of the peaks in the 
wave number domain are needed to calculate the dispersion curve and not 
the amplitude of the spectrum. Instead, when calculating the damping ratio, 
the amplitude of the spectrum and the measured quantity play a main role, 
because the attenuation of the amplitude with the distance is considered. 
The above considerations explain why using the signal measured with either 
geophones or accelerometers gives the same experimental dispersion curve. 
Another point, that needs to be underlined, is that in the experiments a 
discrete representation of the phenomenon is available. This means that the 
discrete nature of the measured signals obligates to operate with discrete 
variables as well as transformations instead of continuous ones. Hence the 
Fourier pair in (2.18) and (2.19) have to be replaced by: 
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where M and N are the temporal and spatial samples and ∆t and ∆x are the 
temporal and spatial sampling intervals. As a consequence care must be 
taken in choosing  ∆t and ∆x to avoid aliasing and leakage when processing 
the gathered signals, as it will be illustrated in the next sections 2.6.1.1 and 
2.6.1.2. 
 
Other methods exist that are based on a double transformation of the wave 
field from time-space domain to either frequency-slowness or frequency-
wave number domains. Anyway by means of the Fourier Slice Theorem 
(Santamarina and Fratta, 1998, Foti, 2000) it can be proved that an 
equivalence among them can be established. 
Regardless of the 2-D transformation used, several researchers (Gabriels et 
al., 1987, Tselentis and Delis, 1998, Foti 2000, Zywicki, 1999, Hebeler, 
2001, Nolet and Panza, 1976) have been able to calculate the experimental 
Rayleigh dispersion relation for real sites. 
Actually some of them have been able to estimate not only the fundamental 
mode, but also the higher modes (Gabriels et al., 1987). This has been 
possible because of the long distances covered in geophysical tests, since in 
such a big spatial scale the dispersion phenomenon takes place and it 
becomes easier to measure the separated Rayleigh modes. In the 
geotechnical scale it is almost impossible to distinguish the Rayleigh modes, 
because the distances involved in the experiments are not enough for mode 
dispersion. As a consequence only an apparent or effective dispersion curve 
can be measured. In the sequel we will focus our attention on the apparent 
or effective dispersion relation. It will be shown that in certain cases more 
than one experimental curve can be obtained from the f-k spectrum of the 
measured wave field (see fig.2.23). 
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2.6.1 Experimental Apparent Dispersion curve 
 
A primary feature, that has not been said yet, is that in the f-k method more 
than two receivers are used. Usually at least 12 receivers are needed for an 
acceptable f-k representation of the wave field and the more the number of 
receivers, the better the calculation of the experimental dispersion relation. 
In this research up to 24 receivers have been employed for the acquisition of 
the experimental data. The typical setup of the experiment consists of a 
linear array of surface receivers, that are expected to measure the 
perturbation produced either by an impulsive or a time harmonic source, 
vertically applied on a point of the free surface (see fig.2.15). 
 
 
 
 
 
 
 
 
 
Figure 2.15: Experimental setup for multi-station f-k method (Foti, 2000, 
Zywicki, 1999, Hebeler, 2001). 
 
More details about the receivers, that have been used in the experiments as 
well as the kind of sources, will be given in Chapter 5, devoted to the 
experimental results. 
The number N of receivers, the distance D source-first receiver and the 
spacing  ∆x between two consecutive receivers control the resolution in the 
wave number domain and the maximum wave number that can be resolved 
without the aliasing phenomenon. The aliasing is an effect due to the 
discrete nature of the gathered signal in the experimental test, by which all 
the harmonic components above the Nyquest wave number are lost: 
 

min2
2
x

kNyquist ∆
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where ∆xmin is the minimum spatial sampling interval between any two 
receivers. 
This means that a small distance between two consecutive receivers allows 
to get reliable information into a large range of  wave numbers. 
Unfortunately a small ∆x also influences the resolution in wave number 
domain, as for definition the resolution in wave number is given by: 

D ∆x

Receivers Source 

∆x
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L
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where L is the total distance between the source and the last receiver, N is 
the number of receivers. If D=∆x, then (2.23) simplifies to: 
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As the resolution in space ∆x decreases the resolution in wave number 
increases, as a consequence of the Heisenberg uncertainty principle 
(Santamarina and Fratta, 1998). It states that for a fixed number of receivers 
N, an improvement in space resolution is gained at expenses of resolution in 
wave number. This problem can be solved by using a variable ∆x along the 
array of receivers. 
Another compromise, to be reached in choosing the space interval ∆x, is 
that, for a given number of receivers N, a too small ∆x causes a too short 
wave train with all types of waves combined together in the disturbance, 
hence near field effects must be considered. Instead, if a too great ∆x is 
chosen, the advantages of being in the far field, with a dispersed train of 
waves, can be lost because of aliasing phenomenon. 
Of course a critical parameter is the number N of receivers, in fact a greater 
number of receivers allows for a better resolution in both space and wave 
number. The improvement in wave number resolution assumes a main role 
in determining the experimental dispersion relation. In fact with a sufficient 
number of receivers it would be possible to experimentally distinguish the 
higher Rayleigh modes. 
One trick to improve the resolution in wave number, without reducing the 
resolution in space ∆x consists in zero-padding the collected signal, but care 
must be taken with this strategy, that could introduce leakage. Leakage 
usually happens when a Discrete Fourier Transform is applied to a discrete 
signal. The DFT introduces high artificial frequencies, because of the 
supposed periodicity of the analyzed signal, hence altering the frequency 
content of the signal itself. In order to mitigate the leakage, a windowing 
process is recommended ( Santamarina and Fratta, 1998). 
What has been said about the transformation of a discrete signal from space 
to wave number domain, is also valid when passing from time to frequency. 
So we can define a Nyquist frequency: 
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t
f Nyquist ∆

=
2
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and a frequency resolution: 
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in which ∆t is the sampling interval in time or time resolution and M is the 
total number of times at which the signal is measured. 
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Figure 2.16: Impulsive source: hammer. Particle acceleration at the last 
receiver (number 16) located at x=32m. 
 
Even in this case the resolution in frequency is controlled by the total 
duration of the travelling perturbation. Beside there are no limitations in the 
number  M of times that can be measured, unfortunately in the case of 
transient disturbances the total signal is contained in a very short time, about 
0.3s÷0.5s, depending on the characteristics of the site (see fig.2.16). 
 
 2.6.1.1 Impulsive Source 
 
One important factor, that controls the way the experimental apparent 
dispersion curve is evaluated, is the kind of source. In this research we deal 
with a vertical point source rather than horizontal one and all the collected 
data  refer to the vertical component of motion. This choice arises from the 
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observation that either vertical or horizontal components of motion 
independently give the same information for the evaluation of the dispersion 
relation, if an isotropic behavior of the material is assumed. 
Essentially two types of source can be used: an impulsive one or a time 
harmonic one. 
The impulsive source can be represented by a heavy or slight hammer or by 
a weight drop or a heavy metallic bucket, depending on the depth one wants 
to investigate. In fact the impulsive source offers the advantage of 
generating at the same time several simple waves with different 
wavelengths. Now the less heavy and small is the source, the higher 
frequencies are produced. A slight hammer generates a disturbance 
characterized by energy at high frequencies, that generally means short 
wavelengths (see formula (A.1)), that sample the very surface part of the 
site. This allows for building up the dispersion curve at high frequencies 
(see fig.2.17).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.17: Experimental dispersion curve obtained by using a sledge-hammer 
(dots) and a weight drop (croxes).(Foti, 2000). 

 
A heavy weight drop, that falls down from a certain height, furnishes a 
disturbance rich with low frequencies, hence long wavelengths, that interest 
deeper layers of the site and help to construct the dispersion curve in the low 
frequency range (see fig.2.17). 
The range of frequencies of interest in geotechnical and earthquake 
engineering applications varies from 0Hz to a maximum of 100Hz, hence 
we will mainly focus the attention on this interval of frequencies.  
For the conduction of the experiments either 16 or 24 vertical receivers have 
been used, that allow for a reliable gathering at frequencies greater than the 
resonant frequency of the sensors (1Hz for accelerometers, 4.5Hz for 
geophones, see Chapter 5). The sampling temporal interval is taken as: 
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st 3102 −⋅=∆  and as total duration stT 31040962048 −⋅=∆⋅= , adding 
zeros before and after the real disturbance, to allow for a better resolution in 
frequency: 
 

Hz
stM

f 244.0
1022048

11
3 =

⋅⋅
=

∆⋅
=∆ −     (2.33) 

 
The Nyquest frequency is: 
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t
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⋅⋅
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∆

= −      (2.34)  

 
that is sufficiently high for the range of frequency of interest. 
For what it concerns the wave number domain, more than one choice can be 
done. If a slight source is used, a shorter total length is covered on the free 
surface, due to a space resolution of either ∆x=1.5m or ∆x=2.0m. Instead 
with a heavy source, smaller frequencies are desired (i.e. waves with great 
wavelengths, that can penetrate more deeply in the system), hence a 
∆x=3.0m is adopted. The total covered length, the Nyquest wave number 
and the wave number resolution ∆k, corresponding to the above space 
samplings and to a zero-padding of 1024-24=1000 additional points in space 
are reported in the table 2.2 below: 
 

 ∆x=1.0m ∆x=1.5m ∆x=2.0m 
Total length (m) 24 36 48 
KNyquest(1/m) 3.1 2.1 1.6 
∆k (1/m) 0.06 0.04 0.03 

 
Table 2.2: Usual choices for the spatial array of the receivers in the f-k 
method with impulsive source. 
 
It can be realized that a small ∆x allows for a greater range of wave numbers 
to be investigated, but a worse resolution in wave number domain. This 
aspect becomes important if the system is inversely dispersive and the 
separated modes of Rayleigh want to be experimentally determined. 
Unfortunately a small ∆x does not allow the dispersion phenomenon to 
separate the several wavelengths of the travelling perturbation. On the 
opposite, a greater ∆x covers a great distance, offers a better resolution in 
wave number, but a lower Nyquest wave number. The traces of the 
velocities obtained in Tuscany (Italy) during a survey for a seismic mapping 
of the region are plotted below (fig.2.18.b). They have been properly scaled, 
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multiplying by the square of the distance the amplitudes, to account for the 
geometrical attenuation. 
Despite the total length is 24 meters, it is not enough to have a complete 
dispersion of the several components of the perturbation, at least three 
different groups can be observed at the last receiver, that travel with 
different group velocities (fig.2.18.a). It is important to notice that it is not 
said, probably it is not, that the three groups represent three different modes 
of Rayleigh. In fact, assuming that the near field effects can be ignored at 
24m apart from the source, each Rayleigh mode is made by different waves, 
that travel with different velocities. As it is explained in Appendix B, there 
is a double multiplicity to be considered. On one side several Rayleigh 
modes exist in the frequency-wave number spectrum of the system, on the 
other hand each mode (i.e. each branch of the dispersion relation) is 
characterized by waves with different group velocities at different 
frequencies. This means that when an impulsive source is used, each mode 
is excited at the same time at different frequencies and the energy associated 
to the simple harmonics of the same mode, corresponding to these 
frequencies, propagate with different group velocities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.18.a: Dispersion phenomenon observed at the last receiver at 24m 
away from the source. 
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The f-k spectrum of the velocities corresponding to these data is represented 
in fig.2.19 and 2.20. It can be  observed a representation of the global signal 
with all types of waves, measured on the free surface. Of course the part of 
interest of the signal needs to be properly extracted, so that only Rayleigh 
waves be considered. This process is accomplished by means of separation 
of events in the f-k spectrum and with the help of the frequency-phase 
velocity representation.  
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Figure 2.18.b: Traces at Bocce site in Tuscany (Italy): the wave train is not 
so much dispersed after 24m. 
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Figure 2.19: Contour plot of the Spectrum of the particle velocities 
measured on the free surface at Bocce site. 



                          Chapter 2: Soil Characterization using Surface Waves___  ________ 
 

 69

 
 

 
Figure 2.20: Frequency-wave number spectrum of the global field of 
vertical velocities on the free surface. 
 

 
 
Figure 2.21.a: Experimental Rayleigh apparent dispersion relation at Bocce 
site (Tuscany, Italy) after a cleaning process. 
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Figure 2.21.b: Representation of the global field in the frequency-phase 
velocity plane. 

 
Figure 2.22: Final experimental apparent or effective dispersion curve at 
Bocce site in terms of phase velocity. 
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Since a sledge hammer has been used as source, the information below 
25Hz is very poor and a heavier source, such as a weight drop is necessary 
to get the dispersion curve at lower frequencies. A valid alternative is 
represented by the use of an electro-mechanical vibratory shaker, that is able 
to generate a harmonic source. This allows for a better signal to noise ratio, 
hence for a more accurate evaluation of the experimental apparent 
dispersion relation, even at very low frequencies. 
Before describing the procedure used to calculate the experimental 
dispersion curve in the case of a harmonic source, some aspects concerning 
the f-k method deserve to be mentioned. 
In evaluating the experimental dispersion curves shown in fig.2.17 and 
fig.2.22 only the absolute maximum in the spectrum has been selected for 
each frequency. This kind of procedure is in agreement with the theoretical 
considerations explained at the beginning of this chapter, but more 
information could be obtained looking for all the relative maxima, that exist 
at each frequency. So for example at Parco Giochi site in Tuscany, when all 
the relative maxima are considered a more complete picture of the events is 
available(fig.2.23). 
The two apparent curves have been obtained from the spectrum of the 
displacements, taking all the relative maxima at each fixed frequency. 
What happens is that the absolute maximum (squares) switches from the 
lower curve to the upper one, so that it seems as if the apparent dispersion 
curve shows a discontinuity. This feature would create ambiguity in 
choosing the right curve to be used for the inversion process. In reality two 
experimental apparent curves can be extracted from the spectrum, by 
considering that all the relative maxima (dots, circles, crosses) make at least 
two crests in the spectrum. Now the question to answer is what these two 
curves represent. They are the result of the interaction between the physical 
properties of the system (i.e. Rayleigh modes) and the geometrical 
configuration of the receivers, used to detect the disturbance. In other words 
the phenomenon, that we investigate, appears as it is, depending on the tools 
that we use to observe it. The scheme in fig.2.25 explains this concept. 
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Figure 2.23:Two apparent dispersion curves at Parco Giochi site (Italy). 
The same dispersion relation can be seen in the frequency-phase velocity 
plane (fig.2.24): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.24: Two apparent dispersion curves at Parco Giochi site. 
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Even if it is very simplified, it helps to understand why the apparent curves 
are not only the combination of the Rayleigh modes, but they are also  
influenced by the array of the receivers. A more detailed explanation can be 
found in the section 2.6.2.a . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.25:Schematic illustration of the interaction between the system 
and the geometrical array of the receivers used to measure the disturbance. 
 
It must be said that, in the inversion process it is not excluded that the 
coupled response of system and array may be used, even if it is preferred to 
deal with quantities, that physically represent the system under investigation 
and efforts should be done to filter the properties of the system from other 
disturbances,. In fact, in the ideal noiseless conditions, if the configuration 
of receivers is held the same in the experimental test and during the 
theoretical simulation, the only remaining factor influencing the measured 
response is given by the properties of the system. 
This subject will be further analyzed in the section 2.6.2.a. 
 
2.6.1.2 Harmonic Source 
 
Many advantages can be offered by using a harmonic source, rather than an 
impulsive one, even if the last one permits to measure a transient 
disturbance, that can be analyzed in the time-frequency domain. It comes 
out that a better signal to noise ratio can be obtained with the harmonic 
source, that is generated by means of an electromagnetic machine (see 
Chapter 5). At each fixed frequency the disturbance is acquired, after the 
source has been run a sufficient time, so that the transient be finished and 
the response of the system can be considered time harmonic. Generally a 
sampling interval ∆t=0.002 s is assumed, since there is no interest in the 
energy content, if any, at frequencies higher than  
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As in the case of an impulsive source, even in the case of harmonic source, 
the response of the system is searched in the frequency-wave number 
domain by means of a 2-D Fourier transformation of the data gathered in 
time-space. The following procedure is more deeply described in (Hebeler, 
2001). 
The first step consists of evaluating the Spatio-spectral Matrix R at each 
frequency of excitation (Hebeler, 2001). 
 The system is loaded at a fixed frequency f and M samples in time domain 
are acquired at each sensor simultaneously. Then the total length of the 
signal L at each sensor is divided into B=L/M blocks and a 1-D Fourier 
transformation is applied to each block and an averaging process is 
performed. This operation should eliminate the effects of random noise. 
 Successively the Cross Spectral Density CSD between each receiver pair is 
calculated and only one value is chosen among all the frequencies, that 
come out from the Fourier transformation of the data at a fixed frequency.  
The mathematical expression of the R matrix is the following: 
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where each term is represented by: 
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in which * indicates complex conjugation, ω the is the circular frequency, f 
is the source frequency and N (or n) is the total number of receivers. The 
term S(ω) is the Fourier transformed response of each sensor: 
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If no noise were present, the transformed representation of the perturbation, 
obtained at the fixed frequency, would show only one peak at about the 
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frequency of excitation. Because of other undesired sources, the signal is 
characterized by other peaks in the frequency domain, so that it is necessary 
to select the peak over a band-limited range around the frequency of 
excitation (see fig.2.26). In this way only one R(f) matrix is defined at each 
frequency of loading. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.26: Cross Spectral Density of the measured particle velocities at 
the last geophone for a frequency of excitation f=20Hz. 
 
The next step concerns the Fourier transformation from the space domain to 
the wave number domain. This task is accomplished by means of the 
Frequency Domain Beamformer (FDBF) analysis. A steering vector 
 

( ) [ ]Txikxikxik Neeeke ⋅−⋅−⋅−= L21       (2.39) 
 
 is defined, that contains all the information about the geometric 
configuration of the receivers. A weighting matrix W(f) is also introduced, 
that allows for a certain variability of the method. W(f) can be chosen as the 
identity matrix or as: 
 

( ) TxxfW ˆˆ=         (2.40) 
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where the vector x̂  specifies the configuration of the receivers, to account 
for geometric spreading of Rayleigh waves with distance from the source. 
Finally the Power spectrum can be defined as: 
 

( ) ( ) ( ) ( ) ( ) ( )kefWfRfWkekfP HT=,      (2.41) 
 
where H denotes the Hermitian transposition (i.e. the transpose of the 
complex conjugate). Once the Power Spectrum has been evaluated, it is 
straightforward to calculate the apparent dispersion curve, by picking the 
peaks of the spectrum at the several frequencies, as it has been shown for 
the case of impulsive source. The method has been applied to the site at the 
Leaning Tower of Pisa and in fig.2.27 and fig.2.28 the normalized spectrum 
of velocities at f=20Hz and the resulting experimental dispersion curve can 
be seen. 

 
Figure 2.27: Normalized Power Spectrum of velocities at Pisa Tower for 
f=20Hz. The peak in the Spectrum individutes the wave number used to 
calculate the apparent dispersion curve. 
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Figure 2.28: Experimental Apparent Dispersion curve at Pisa Tower, 
obtained by means of the FDBF analysis. Harmonic source and velocities 
measured by 24 geophones. 
 
It is useful to remember that either accelerations or velocities or 
displacements can be used in evaluating the Rayleigh dispersion curve, as it 
has been explained at the beginning of the section 2.6. 
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2.6.2 Theoretical Apparent Dispersion curve: New Proposed Method 
 
In the previous section the procedure to calculate the experimental 
dispersion curve has been described in both cases of impulsive and 
harmonic source. 
One of the merit of this research is to propose a new method for evaluating 
the theoretical dispersion curve, that is consistent with the experimental 
procedure (Roma, 2001, Roma et al., 2001). 
If one wanted to theoretically simulate the experimental test it should be 
necessary to assume the same spatial array of the sensors, the same temporal 
parameters and the source should be characterized. In this way the spatio-
temporal response of the system at the receivers would be available and the 
same signal processing technique, to treat the data, could be used, as in the 
experimental procedure. Although this method is the most rigorous, it is also 
time expensive, especially in the view of  an iterative procedure, inside an 
optimization algorithm. In order to overcome this drawback, the first step is 
to use the analytical expression of the displacements in the frequency-space 
domain and transform directly to the frequency-wave number domain, 
without passing through to the time-space domain. At this point one issue 
would be the need of characterizing  the source in the frequency-wave 
number domain. In Appendix A it has been demonstrated that, under the 
assumptions of linearity of the phenomenon and if a point source is used, it 
is not necessary to characterize the source to evaluate the theoretical 
apparent dispersion curve. The small level of deformation (less than 10-4 

÷10-6 % depending on the soil) justifies the assumption of the linear elastic 
theory, to model the behavior of the soil as an equivalent continuum. The 
first hypothesis of linearity of the phenomenon has just been implicitly 
assumed, when dealing with a system of linear differential equations that 
constitute the eigenvalue problem of Rayleigh waves. The linearity allows 
for the super position principle to hold and for the use of the Fourier 
transforms. The second assumption of point source is also valid, since the 
distances that are involved in the experiment, are large enough to neglect the 
dimensions of the source. As it is explained in the Appendix A, the 
maximum wave number of interest is rarely greater than 3 rad/m and the 
types of source do not have a size, that corresponds to wave numbers lower 
than 12 rad/m. As a consequence the source can be represented in the 
frequency domain only, but, as it is shown in Appendix A, there is no need 
to characterize the source, since the position of the peaks of the spectrum in 
the wave number domain does not depend on the frequency content of the 
source. Instead the kind of source influences the range of frequencies, where 
the apparent dispersion curve is visible, so that different types of source, 
with different frequency content, make it possible to calculate parts of the 
same apparent dispersion curve, that should overlap (see fig.2.17, fig.2.A). 
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Hence, to consistently evaluate the apparent dispersion curve, it is only 
sufficient to have the response of the system due to a time harmonic point 
source and to simulate the same configuration of sensors, that has been 
adopted in the experimental test. The same signal processing procedure 
must be applied, with specific reference to the zero padding. 
Another relevant aspect is that, by knowing the response of the system to a 
time harmonic source, the Transfer Function or Green Function of the 
system is available. This is useful not only for evaluating the response of the 
system to any type of loading, but also for determining the natural 
frequencies and the natural wave numbers of the system. An interesting 
operation consists of considering each modal response, independently from 
the others, and evaluating the spectrum of the displacements referred to each 
mode, following its modal path in the frequency-wave number plane. In this 
way it is possible to understand the meaning of the apparent dispersion 
curve as a proper combination of the generalized Rayleigh modes. It can 
also be explained how the predominance passes from one mode to another 
in the inversely dispersive systems.  
Consider for example the system illustrated in the table 2.2: 
 

Layer Thickness 
h(m) 

Vp (m/s) Vs (m/s) Mass density 
(Kg/m3) 

1 5 750 500 1800 
2 10 600 400 1800 
3 10 750 500 1800 

Half-space ∞ 900 600 1800 

 
Table 2.2: Inversely dispersive site from Lai, 1998: Case 3. 

 
For this system the Rayleigh modes and the theoretical apparent dispersion 
curve are plotted in the phase velocity-frequency domain in fig.2.29. The 
spatial array consists of 24 sensors with a sampling ∆x=1.5m. As it can be 
seen, the apparent dispersion curve jumps from the first mode to the higher 
modes as the frequency increases. The explanation can be found looking at 
the normalized spectrum of the modal displacements in fig.2.30. 
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Figure 2.29: Rayleigh modes and theoretical apparent dispersion curve (red 
circles) for Lai Case3 
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Figure 2.30: Relative importance of Rayleigh modes and natural 
frequencies. 

 
Figure 2.31: Modal group velocities for Lai Case3. 
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The transition of predominance from the ith mode to the jth mode occurs in a 
range of frequencies, where the energy of the ith mode drops down and the 
energy of the jth mode grows up. The reason why such a transition exists 
from one mode to another is not completely understood yet. It seems as if 
the frequencies of transition of predominance from the ith mode to the jth 
mode coincides with the zones where the curvature of the dispersion curve 
is stationary in the phase velocity-frequency representation (fig.2.29), as just 
evidenced by some authors (Gucunski and Woods, 1991).  
The energy of the ith mode decreases at about the same frequency at which 
its group velocity becomes definitely lower than the group velocity of the 
new predominant jth mode, without hope of overcoming it again at higher 
frequencies. This happens if the ith mode will never become predominant 
again at higher frequencies. In the meantime the energy of the new 
predominant jth mode grows up. It seems as if the predominant mode be 
characterized by the fact that it will reach the maximum flux of energy, 
before losing its predominance. Remember that the group velocity 
represents the velocity at which the energy associated to the wave travels. 
The main energy is carried by the mode that will carry it at the maximum 
speed. Anyway in the opinion of the Author the Rayleigh dispersion relation 
contains all the information, that is necessary to predict how the influence of 
the several modes varies in the f-k representation. For the example Lai 
Case3 the transition from the 1st mode to the 2nd mode happens between 
40Hz and 50Hz and from the 2nd mode to the 3rd mode between 70Hz and 
80Hz. 
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Figures 2.32a, b: Vertical (solid) and horizontal (dots) displacements 
eigenvectors for the 1st mode (a) and the 2nd mode (b) at the frequency 
f=21Hz for Lai Case3. 

Figures 2.33a, b: Displacement eigenvectors for the 1st mode (dots) and the 
2nd mode (solid) at f=45Hz (a) and vertical (solid) and horizontal (dots) 
components of the 2nd mode at f=60Hz (b). 
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Figures 2.34a, b, c: Vertical (solid) 
and horizontal (dots) displacement 
eigenvectors for the 1st mode (a), the 
2nd mode (b) and the 3rd mode at 
f=100Hz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is interesting to investigate the shapes of the displacement eigenvectors at 
different frequencies for the several modes. As it is expected at low 
frequencies (i.e.21Hz) the 1st mode is predominant, hence its modal shape 
follows the same trend with depth of the displacements in a homogeneous 
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half-space (fig.2.32a). The 2nd mode reaches a greater depth than the 1st 
mode, but it does not give any significant contribute on the surface 
(fig.2.32b). At higher frequencies (i.e.45Hz and 60Hz) the 2nd mode is 
predominant  (fig.2.33a, b) on the free surface and its shape is again similar 
to that one in a homogeneous half-space, except that two changes in the sign 
of the curvature exist rather than one. The same behavior is observed for the 
3rd mode with three changes in the sign of the curvature at the frequency of 
100Hz (fig.2.34c), where the 1st and the 2nd modes can be neglected on the 
free surface (fig.2.34a, b). 
An interesting observation is that the maximum depth at which information 
is available is 20m and it is reached by different modes at different 
frequencies. At f=21Hz by the 1st mode and the 2nd mode, but only the 1st 
mode is significant on the free surface, at f=45Hz and 60Hz only by the 2nd 
mode and at f=100Hz the maximum depth of 12m is achieved by the 2nd 
mode, but it cannot be observed on the free surface, where its amplitude is 
very small. 
 
2.6.2.1 Influence of the spatial configuration of the receivers on the 
theoretical apparent dispersion curve 
 
The importance of using the same spatial array of the receivers is due to the 
fact that the apparent dispersion curve is the result of an interaction of both 
the system and the spatial array (see section 2.6.1.1) and does not represent 
only the response of the system. The main reason is to be searched in the 
Discrete Fourier transform applied to the data, that are finite in time and 
space. This makes the Rayleigh modes appear as dispersed lobes rather than 
spikes in the spectrum at each fixed frequency, with secondary side-lobes 
that may interfere each other when two or more higher modes are pretty 
close at a certain frequency (see fig.2.37). This means that with the same 
system, changes in the spatial array of the sensors can cause variations in the 
apparent dispersion curve. As an example consider the system described in 
the table 2.3 (caseH):  
 

Layer Thickness 
h(m) 

Vp (m/s) Vs (m/s) Mass density 
(Kg/m3) 

1 2 750 500 1900 
2 10 300 200 1900 

Half-space ∞ 900 600 1900 
 
 

Table 2.3: Site H: inversely dispersive site. 
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For this system a varying number n of receivers has been used to evaluate 
the theoretical dispersion curve with different inter-sensors spatial sampling 
∆x (see table 2.4). 
 

 S(m) ∆∆∆∆x(m) Sensors 
number 

kNy Total length 

Case A 1.5 1.5 24 2 36 
Case B 1.5 1.2 18 1.5 36 
Case C 1.5 2.0 30 3 36 
Case D 2.0 3.4 24 1 80 

 
 
Table 2.4: Different spatial configuration of the receivers for the system H. 

 
The dispersion curve does not change sensibly for the cases A, B and C.  
As it can be seen in fig.2.35 and fig.2.36 the apparent dispersion curve 
varies at the frequency of about 75Hz for the case D. Up to the 6th mode, at 
a frequency of 70Hz, the theoretical apparent dispersion curve is the same 
for all the cases. In the cases A, B, C the theoretical dispersion curve passes 
from the 6th mode to the 9th mode, instead in the case D even the 8th mode 
becomes predominant between 70Hz and 80Hz. 
As just said before, the reason is that the side-lobes generated by the 
different spatial arrays have different size and, when more modes are close 
in the wave number domain at a certain frequency, as a result of interference 
it is not possible any more to distinguish the peaks associated to the modes, 
but only one common and large peak appears. In the cases A, B, C in 
fig.2.37 we can observe the spectrum of displacements at the frequency of  
75Hz. Only three peaks are visible, that represent all the existing Rayleigh 
modes at that frequency. 
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Figure 2.35: Rayleigh modes and theoretical apparent dispersion curve (o) 
for cases A, B, C.  
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Actually the main energy associated to the perturbation at that frequency is 
only carried by the 7th, 9th and the 6th modes (see fig.2.38), but the secondary 
left-lobe of the 7th mode interferes constructively with the peak of the 9th 
mode, more than the secondary right-lobe of the 9th does with the peak of 
the 7th mode, so that, when all of them are considered together (fig.2.37), the 
apparent maximum peak coincides with the first peak from the left, that is 
nearest to the 9th mode. As a consequence the apparent theoretical 
dispersion curve jumps from the 6th mode at f=69Hz to the 9th mode at 
f=75Hz. 
In the case D (fig.2.36) another kind of interaction exists, so that at 75Hz the 
7th mode is predominant, as it should be by looking at the fig.2.38, where 
the spectrum of all the modes considered independently has been reported. 
The meaning of such a plot is relevant, since it allows to identify the natural 
frequencies of the system as the frequencies at which the response is 
maximized. On this topic the whole end of the chapter is focused, due to its 
importance for dynamic soil-structure interaction applications. It is 
remarkable that in all the considered cases A, B, C, D the natural 
frequencies at which the system reaches the resonance, are the same. This 
means that the natural frequencies of the system are found without 
dependence on the particular spatial array of receivers that is used. 
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Figure 2.36: Rayleigh modes and theoretical apparent dispersion curve (o) 
for case D. 
 



                              Chapter 2: Soil Characterization using Surface Waves______________ 
 

 90

 

 
Figure 2.37: Spectrum of the vertical displacements at the frequency of 
75Hz in the cases A, B, C. Interaction between the system and the spatial 
configuration of the receivers. 
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An interesting aspect is that the peaks in the modal spectrum of each mode 
are not modified, if the displacements are multiplied by a geometric factor 
1/√r, to account for the geometric attenuation of Rayleigh waves with 
distance r from the source. The same consideration has been made by 
(Tselentis and Delis, 1998) for the evaluation of the dispersion curve. The 
fig.2.39 shows the modal normalized spectra in the case D, after each modal 
component of the displacements has been amplified by the geometric factor 
1/√r. 
 

 
Figure 2.38: Normalized spectrum of the modal vertical displacements 
considered independently from each other (all the cases A, B, C, D). The 
relative importance of the higher modes of Rayleigh can be seen at different 
frequencies with the natural frequencies of the system H. 
 
If the same configuration of receivers is adopted, a guarantee of consistency 
between the experimental and theoretical procedures can be established. 
This expedient assures that in ideal noiseless conditions the apparent 
dispersion curve only depends on the properties of the system, once the 
spatial array of sensors has been fixed. 
In this section 2.6.2 it has been said  that the apparent theoretical dispersion 
curve can be evaluated by means of only 1D Fourier transformation from 
the frequency-space domain to the frequency-wave number domain, instead 
of a 2D Fourier transformation from time-space to frequency-wave number. 
This is true under some hypotheses, which have been previously listed, and 

 1st 

 2nd  3th 

 5th  6th  7th  8th  9th 
 4th
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it has been theoretically demonstrated and experimentally verified (see 
Appendix A). The two main advantages are that there is no need for the 
source characterization and the time saving in calculating the theoretical 
simulation. The reader should notice that it was not obvious affirming the 
equivalence among any kinds of sources in evaluating the theoretical 
response of the system. 
In the next Chapter 3 it will be possible to implement an Inversion 
algorithm for determining the dynamic stiffness profile, thanks to this new 
method of evaluating the theoretical dispersion curve. 
In the next section a comparison among the three methods will be presented 
for evaluating the theoretical apparent dispersion curve. The standard 
SASW with only two sensors, the effective phase-velocity method and the 
new proposed f-k theoretical method will be applied to both normally and 
inversely dispersive examples and the validity of the f-k theoretical method 
will be confirmed.  

 
Figure 2.39: Influence of the geometric spreading factor 1/√r on the natural 
frequencies of the system and the theoretical apparent dispersion curve. 

 1st 
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 3th 

 5th  6th  7th  8th  9th
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2.7 Comparison among SASW, Effective phase velocity and f-k methods 
 
In this section some representative examples, both normally and inversely 
dispersive systems, will be studied in order to make a comparison among 
different methods for evaluating the theoretical apparent dispersion curve. 
As first case A a normally dispersive system is considered, whose 
characteristics are illustrated in the table 2.5 below: 
 

Layer Thickness 
h(m) 

Vp 
(m/s) 

Vs 
(m/s) 

Mass density 
(Kg/m3) 

1 5 600 350 1800 
2 10 700 400 1800 

Half-space ∞ 800 450 1800 
 

Table 2.5: System A normally dispersive site. 

Figure 2.40: Comparison among different methods for evaluating the 
theoretical apparent dispersion curve for case A. 
 

(star) effective phase velocity method 

(triangle) standard SASW 

(circle) theoretical f-k method 
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As it is expected, the fundamental Rayleigh mode is predominant at all the 
frequencies, since the system A is normally dispersive and the higher modes 
can be ignored in determining the theoretical dispersion curve, to be 
compared with the experimental curve. 

 
Figure 2.41: Relative importance of Rayleigh modes for case A 
 
In fig.2.40 the Rayleigh modes are plotted in terms of the phase velocity, 
together with the apparent theoretical dispersion curves, evaluated by means 
of three different methods. The results of the standard SASW (triangles), of 
the effective phase velocity method (stars) and the theoretical f-k method 
(circles) match very well, perfectly fitting the fundamental mode of 
Rayleigh.  
This result is clearly understood, if we observe the normalized spectrum of 
surface vertical displacements associated to each Rayleigh mode of 
vibration (fig.2.41). The first mode is always predominant over the higher 
modes, that increase and decrease with the frequency with an alternation of  
importance. So the transition of a sort of secondary predominance concerns 
the higher modes, that remain always negligible compared to the 
fundamental mode. 
As second example an inversely dispersive system B has been taken, that is 
described in table 2.6.  
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Layer Thickness h(m) Vp (m/s) Vs (m/s) Mass density 
(Kg/m3) 

1 5 700 400 1800 
2 3 500 300 1800 

Half-space ∞ 800 450 1800 
 
Table 2.6: System B inversely dispersive: softer layer trapped between two 
stiffer ones 
 

 
Figure 2.42: Relative importance of Rayleigh modes for case B 
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Figure 2.43: Theoretical apparent dispersion curve for Case B. 

 
This case has just been encountered in Chapter 1, when describing the 
problem of the jumps in the Rayleigh dispersion relation. It represents a 
system with a soft layer trapped between two stiffer ones and, as shown in 
fig.2.42, the fundamental mode is the most important up to a frequency of 
about 70Hz, then the 2nd mode becomes predominant. Again the agreement 
among the theoretically dispersion curves, evaluated by means of different 
methods is excellent (fig.2.43). 
An aspect, that needs to be mentioned about the effective phase velocity 
method by Lai, is that the effective phase velocity, as evaluated by means of 
(2.17), is a function of frequency and distance from the source. Hence for 
each frequency,  n values of phase velocity are available, where n is the 
number of the sensors on the free surface (fig.2.44). This means that an 
averaging process is needed to obtain only one theoretical dispersion curve, 
to be compared to the experimental curve. Now an issue arises about the 
best criterion to be followed, to average the phase velocities at the several 
locations. It turns out that, by taking the mean value, satisfactory results are 
obtained (fig.2.43), even if, rigorously speaking, there is no reason for its 
validity, since the experimental dispersion curve is calculated in a different 
manner. It is this lack of consistency between the experimental f-k method 
and the theoretical effective phase velocity method (Foti, 2000), that has 
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motivated the search of a more consistent procedure, for evaluating the 
theoretical dispersion curve, as previously proposed in this Chapter (see 
section 2.6.2). 

 
Figure 2.44: Effective Phase Velocities calculated at all the receivers 
location for each frequency. 
 
As third example an inversely dispersive system has been chosen, that can 
be representative of a profile with a stiff layer on the top. 
 

Layer Thickness h(m) Vp (m/s) Vs (m/s) Mass density 
(Kg/m3) 

1 10 1500 1000 1900 
2 10 750 500 1900 

Half-space ∞ 1500 1000 1900 
 

Table 2.7: System C inversely dispersive: stiff surface layer. 
 
This case is similar to case B, except that a far more contrast exists between 
the stiffnesses of the surface layer and the second layer.  
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Figure 2.45: Theoretical Dispersion curves for Case C. 
 
For this case it is quite evident that, at the cut-off frequency, each mode has 
a phase velocity value equal to the shear wave velocity 1000 m/s of the 
deepest layer, that is the half-space. Also all the Rayleigh modes tends to the 
asymptotic value equal to the shear wave velocity 500 m/s of the softer layer 
at high frequencies. Again in fig.2.45 and fig.2.46 the comparison among 
different procedures and the relative importance of Rayleigh modes are 
reported. The f-k method allows for a theoretical dispersion curve, that 
further considers the relative importance of Rayleigh modes. In fact the 2nd 
mode is never predominant (fig.2.46) and consequently the apparent 
dispersion curve never coincides with this mode (fig.2.45). 
 
 
 
 

(square) effective phase velocity method 

(triangle) standard SASW 

(circle) theoretical f-k method 
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Figure 2.46: Relative importance of Rayleigh modes for Case C. 

 
As last example another inversely dispersive system has been taken from the 
paper by (Gucunski and Woods, 1991), except that here any dissipation of 
energy has been neglected. This system represents a case where a stiffer 
layer is trapped between two softer ones.  
 

Layer Thickness h(m) Vp (m/s) Vs (m/s) Mass density 
(Kg/m3) 

1 20 1200 600 1800 
2 20 2000 1000 1800 
3 80 1200 600 1800 

Half-space ∞ 2000 1000 1800 
 
Table 2.8: System by Gucunski inversely dispersive: stiff layer trapped 
between two softer layers. 
 

Mode 1 

5 

2

3 

4 

6 
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Figure 2.47: Rayleigh modes and apparent dispersion curves for case from 
Gucunski. 
 
The fact that no layers exist, that are stiffer than the half-space, assures the 
existence of propagating Rayleigh waves at any frequency.  
In fig.2.47 only the first four Rayleigh modes have been plotted together 
with the theoretically simulated apparent dispersion curves. The agreement 
among the several methods is satisfactory even in this types of systems, in 
which the fundamental mode is predominant at almost all the frequencies, 
except in a narrow range, between 5Hz and 10Hz in this case, where the 
system response coincides with the second mode. A more insightful picture 
of the relative importance of Rayleigh modes is offered in fig.2.48 by the 
projection on the frequency domain of the normalized spectrum of vertical 
displacements of each mode, along their path in the frequency-wave number 
domain. In fig.2.48 only the first three Rayleigh modes have been reported, 
since the higher modes are not relevant.  

(square) standard SASW 

(star) effective phase velocity Lai 

(circle) theoretical f-k method 
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Figure 2.48: Case from (Gucunski and Woods, 1991). Projection on the 
frequency domain of the normalized spectrum of vertical displacements of 
each Rayleigh mode, following their path in the frequency-wave number 
domain. 
 
 
 
 
 

Mode 2Mode 1 

Mode 3
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2.8 Relative Importance of Generalized Rayleigh Modes of Propagation 
 
As just previously underlined, the kind of representation in fig.2.48 enables 
one to discern the relative influence of each Rayleigh mode at a particular 
frequency of excitation. It also gives a clear identification of the system in 
terms of frequencies and wave numbers of resonance, where the system 
response is maximized. Look for example at the fig.2.29 case 3 from (Lai, 
1998). It can be easily recognized that the peaks in the spectrum of the 
Rayleigh modes furnish the frequencies 10Hz, 60Hz, 90Hz where the 
system response reaches a maximum. The knowledge of the frequencies and 
the wave numbers of resonance for a given system is a precious information 
in several  engineering applications, such as site local amplification, soil-
structure dynamic interaction, control of vibrations produced by shallow 
machines or subways. Once the geometrical-mechanical properties of a 
layered half-space are given, it is possible to predict in which manner a 
known input source will be amplified by the system. The end of this Chapter 
will focus on this subject and the particular case of a single layer over a 
half-space will be studied, in order to correlate the frequencies and the wave 
numbers of resonance to the geometrical-mechanical properties of the 
system. 
Hereafter a detailed explanation of the procedure followed to get the modal 
spectrum is described (Roma et al., 2001). Consider the jth modal 
component of the vertical displacements on the free surface of a layered 
half-space, due to a harmonic point source applied on the free surface as 
illustrated in fig.2.52 (see formula 2.9): 
 

( ) ( ) 





 +⋅−⋅
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j
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j

    (2.42) 

 
As it is explained in Appendix A, the modal Green Function or modal 
contribution to the space-frequency response of the system can be written 
from (2.42) as: 
 

( ) ( ) 




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 +⋅−

⋅= 4,,,,u
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xki
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j

ezxAzx
j     (2.43) 

 
which gives the vertical displacement in the frequency-space domain, due to 
the jth Rayleigh mode. By means of a Fourier Transformation the modal 
spectrum of the vertical displacements can be obtained in the frequency-
wave number domain: 
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It is important now to think about the meaning of such a modal spectrum. In 
fact it says how the jth mode behaves along its modal dispersion path in the 
frequency-wave number domain. It is true that, by definition, the whole 
modal curve represents the locus of points, that define the natural modes of 
the system, but along the modal path in the frequency-wave number domain, 
some peaks are reached where the modal response is maximized. 
So for example consider the system below: 
 

Layer Thickness 
h(m) 

Vp (m/s) Vs 
(m/s) 

Mass density 
(Kg/m3) 

1 5 1500 1000 1800 
2 5 750 500 1800 

Half-space ∞ 1500 1000 1800 
 

Table 2.9: Inversely despersive system E. 
 
The Rayleigh dispersion relation associated to this system is represented in 
the frequency-wave number domain in fig.2.49 and frequency-phase 
velocity in fig.2.50, instead the projection of the normalized spectrum of 
each mode (2.44) on the amplitude-frequency plane is plotted in fig.2.51. 
A general observation is that higher modes reach at least a relative peak of 
resonance at higher frequencies than the lower modes. 
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Figure 2.49: Rayleigh dispersion relation in f-k domain for the system E in 
table 2.9 
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Figure 2.50: Rayleigh dispersion relation in f-Vphase domain for the 
system E in table 2.9. 
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Figure .51: Projection of the normalized spectra of Rayleigh modes for the 
system E in table 2.9. 
 

Normalized Spectrum 
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2.8.1 One layer over a Half-space 
 
As it is expected, the Green Function of a system depends on its 
geometrical-mechanical characteristics, but very often it is not possible to 
find a simple correlation among the properties of the system and its natural 
frequencies and wave numbers. This is the case of a layered half-space, 
where neither the natural modes (given by the Rayleigh dispersion relation) 
are available in analytical form, nor the frequencies and the wave numbers 
of resonance. To have an idea of the analytical complexity of the problem in 
Appendix C the Rayleigh dispersion relation is reported for the simple case 
of a single layer over a half-space. Even in this simplified case, in order to 
study the influence of the system properties on the position of the peaks in 
the f-k spectrum of the displacements, associated to each Rayleigh mode, 
the only practicable way seemed a sensitivity analysis, to be held 
numerically by means of a code, properly implemented by the Author. 
The schematic of the system is illustrated in fig.2.52 with its properties: 
thickness h1 of the layer, shear wave velocities Vs1 and Vs∞, Poisson ratios 
ν1 and ν∞, mass densities ρ1 and  ρ∞ of the layer (sub-index 1) and the half-
space (sub-index ∞): 
 

 
 
Figure 2.52: Mechanical System: a single layer over an infinite half-space. 
No dissipation is included in the model. 
 
 
The strategy, that has been adopted, is to hold all the parameters constant 
except the one of interest, so that its influence on the position of the peaks 
can be easily put in evidence. 
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2.8.1.1 Dependence from the generic Rayleigh Mode 
 
The first variable, that has been investigated, is the number j of the Rayleigh 
mode of vibration. In the fig.2.53 the dependence of the frequency of 
resonance Rf  upon the jth mode has been represented for a set of constant 
properties. 
In this study only the first five modes have been taken into account, since 
higher modes are not relevant in engineering applications. As it can be seen 
from fig.2.53 a linear relationship exists between the frequency of resonance 

Rf and the jth mode, i.e. the higher the mode the greater the frequency Rf . It 
should be observed that this excellent agreement has been found to hold for 
different sets of parameters. 

 
 
Figure 2.53: Influence of the j-th Rayleigh mode on the frequency of 
resonance 
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2.8.1.2 Influence of the Thickness 
 
The next variable is the thickness h1 of the layer, that is reported on the x 
axe(see fig.2.54). On the y axe a dimensionless quantity is put, that is given 
by: 
 

∞

⋅
=

Vs
hfy R 1         (2.45) 

 
In this way it is more clear that an inversely proportionality ties the 
thickness h1 and the resonant frequency Rf , in fact for all the modes the 
chosen dimensionless quantity y remains constant. Of course this is true for 
whatever choice of the constant properties the simulation is run. It is worthy 
to note that the relationship holds for a wide range of thickness i.e from 2m 
up to 25m at least. 
 

 
Figure 2.54: Variation of the resonant frequency Rf  with the thickness h1 
of the layer.  
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2.8.1.3 Variation with Shear Wave Velocities of both the layer and the 
half-space 
 
Successively the influence of the shear wave velocities of the layer 

1Vs (fig.2.55) and the half-space ∞Vs (fig.2.56) has been studied and from 
fig.2.55 it can be inferred that again a linear link correlates 1Vs  to Rf , 
instead it seems that Rf  does not depend on the stiffness of the half-space. 
 
 

 
 
Figure 2.55: Frequency of resonance Rf   as a function of the shear wave 
velocity 1Vs for several modes. 
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Figure 2.56: Spectrum of the vertical displacement (fundamental mode 
only) for different values of shear wave velocity ∞Vs  of the half-space. 

Normalized  
Amplitude
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What it can be said is that, if the shear wave velocity ∞Vs (fig.2.56) of the 
half-space varies, the frequency at which the spectrum shows its peak does 
not change significantly, but only the magnitude of the peak is strongly 
influenced by the stiffness ratio between the half-space and the layer. 
Precisely as the contrast between the stiffness increases, the peak becomes 
sharper as it is expected. Indeed in the extreme case of infinitely rigid half-
space, all the energy carried by an incident wave, coming from the upper 
layer on the interface is reflected back into the layer and no radiation of 
energy occurs. Actually a very slight variation of the frequency of resonance 
happens, since the whole system varies its stiffness, but this change can be 
neglected without any appreciable error. Even if not reported, such a 
behaviour has also been observed for higher modes. 
 
2.8.1.4 Effects of the Poisson Ratio 
 
 

 
Figure 2.57: Influence of the Poisson ratios on the resonance of the 
Rayleigh modes. The same Poisson ratio ν1 = ν∞ has been kept for the 
simulations. 
 
The last parameters that have been analysed are the Poisson ratios, whose 
results seem to show that the frequency of resonance Rf  is practically 
independent from them in a wide range of variation, even if a more detailed 
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investigation is suggested for confirmation. In fig.2.57 the frequencies of 
resonance for Rayleigh modes have been drawn, taking the same Poisson 
ratio for both the layer and the half-space. For the fundamental mode no 
variations exist by changing the Poisson ratios, instead the higher modes 
seem to have a weak dependence on them. In fig.2.58 the 3rd modal 
spectrum of the system specified in the figure has been plotted for three 
different values of the Poisson ratios. As it can be observed the position of 
the peak slightly varies. 
By summarising all the results obtained herein an approximate relationship 
can be written among the parameters of the system under consideration and 
the frequency of resonance Rf  for the generic j-th Rayleigh mode: 
 

( )
1

1)(
h

VsBjAjf R +≅        (2.46) 

 
in which the two constants A and B have been determined as follows. 
Plotting all the simulations, that have been performed, in terms of the 
dimensionless variable 
 

1

1

Vs
hfy R ⋅

=         (2.47) 

 
as a function of the generic j-th Rayleigh mode a line can be drawn from 
which the two constants A and B that appear in (2.46) has been evaluated 
(fig.2.59). 
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Figure 2.58: Influence of Poisson ratio on the resonant peak of the 3rd 
mode. 
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It has also been shown the error associated to each point in the assumption 
of a Gaussian distribution of the error. As it can be seen the relative error of 
the dimensionless quantity y is always less than 5%, that proves the formula 
(2.46) to be valid. 

 
Figure 2.59: Determination of the constants A and B and associated error. 

 
To test the validity of the formula (2.46) consider the example in fig.2.60. 
The predicted frequencies of resonance of each mode are reported in table 
2.10: 
 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 
Resonant 
frequency 

(Hz) 

 
14.9 

 
32.3 

 
49.6 

 
66.9 

 
84.3 

 
Table 2.10: Resonant frequencies for the example in fig.2.60. 

 
The agreement between the predictions of the formula (2.46) and the 
calculated modal spectra are excellent. 
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Figure 2.60: Normalized modal spectra of the displacements and 
frequencies of resonance for travelling Rayleigh waves in a layered system: 
a single layer over a half-space. 
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It must be observed that the phenomenon of wave propagation we deal with 
is represented in a three dimensional space in a bi-dimensional domain, so 
the system resonance has to be identified by a pair of independent variables, 
say the frequency and the wave number. When dealing with wave 
phenomena, between the temporal and the spatial scales a precise 
relationship exists: 
 

k
ff

T
c ⋅=⋅== πλλ 2        (2.48) 

that links the wave number with the frequency. Hence from (2.46) the 
resonant wave numbers can be evaluated: 
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It is expected that, during the propagation of a disturbance, the frequency 
and the wave number be not independent, but strictly correlated by the 
dispersion relation of the system. In Chapter 5 the wave numbers of 
resonance as well as the frequencies will be shown for the real site 
Wolfriver. 
 
 
2.8.1.5 Comparison between Rayleigh and Shear Waves 
 
Eventually an interesting analogy can be established with the so called shear 
column model (Silvestri and Lanzo, 1999), in which vertically travelling 
shear waves are assumed in the same system, with a rigid half-space as it is 
schematically illustrated in fig.2.61: 

 
Figure 2.61: Shear column model. 

 
In this case the frequencies of resonance of the system are well-known (see 
for example Kramer, 1996): 
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1
h

Vs)5.025.0( )( 1jjshearf +−=       (2.50) 

 
It is evident the formal analogy between the two formulas (2.46) and (2.50), 
even if it should not be expected, because of their completely different 
phenomenon. The two cases are in fact concerned about the propagation of 
two distinct kinds of waves with different components of motion. It can be 
seen that, for a fixed jth mode of propagation, the resonant frequency for 
Rayleigh waves is always greater than the resonant frequency for shear 
waves in the shear column model (see fig.2.62). 

 
Figure 2.62: Frequencies of resonance for Rayleigh waves and shear 
column model for a single layer over a half-space. 
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Chapter 3 
 
 
 

Inversion Procedure: Stiffness Profile 
 

Introduction 
 
In Chapter 2 we have defined a new theoretical approach for evaluating the 
Rayleigh Dispersion relation, that is consistent with the experimental 
procedure and allows for an insight about the relative importance of all 
Rayleigh modes in the f-k spectrum. It has been also verified the validity of 
the new method, by comparing it to other methods, such as standard SASW 
and Effective phase velocity method by Lai (Lai, 1998). 
In this Chapter an Inversion Algorithm will be presented, to infer the 
stiffness profile of both normally and inversely dispersive systems, that 
accounts for all higher Rayleigh modes. 
 
3.1 The optimization problem 
 
The inversion procedure can be addressed as an optimization problem. The 
problem falls in the area of non linear curve fitting. The inversion is 
attempted, by matching the measured apparent curve with the theoretical 
apparent curve. The physical parameters, which describe the underlying 
system, are determined by the curve matching. The aim of the optimization 
procedure is to select the parameters in such a way, that both functions are 
matched. The result of the optimization coincides with the result of the 
general inversion problem.  
 
3.1.1 Mathematical optimization model 
 
The apparent measured curve Vexp , which describes the dispersion relation 
for the particular site, is plotted as a function of frequency. Vexp is an 
ordered vector of phase velocities, where the index number corresponds to a 
certain frequency. In the same manner the theoretical apparent curve Vtheo is 
defined. The error for the curve fitting is defined as e = Vexp - Vtheo . The 
Objective Function is defined as the sum of the squared errors. Hence the 
problem is converted into a least square error minimization. 
The parameters are classified into two distinct categories: layer thicknesses 
h and layer stiffnesses, which are described by the shear wave velocities Vs.  
The physical parameters of the system are subjected to certain limits. The 
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decision variables of the optimization, the layer thicknesses hi and the shear 
wave velocities Vi are subjected to the following constraints: 
 
1) Each layer must be larger than a desired value, otherwise it has no 
influence on the measured data. 
2) The sum of the thickness  must be smaller than the maximum depth for 
which information can be gathered (λ/2). 
3) Shear wave velocities must be larger than zero, negative numbers have 
no physical meaning. 
 
The problem can be classified as a non linear constrained least square 
minimization.  
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N is the number of frequencies, M is the number of layers. For a problem 
with M layers M+1 shear wave velocities exist, M shear wave velocities for 
the M layers plus another shear wave velocity for the half-space. 
 
3.1.2 Optimization approach 
 
The algorithm chosen to solve the optimization problem is the Penalty 
Method as described in (Reklaitis et al, 1990). The problem is converted 
from constrained minimization problem in an unconstrained series of 
minimization problems. As penalty term for the constraints, the bracket 
operator is chosen.  The mathematical model (3.1) is transformed to the 
following problem. 
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where 
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k        (3.3). 

The R parameter is a penalty factor that combines the distance between the 
experimental and the theoretical responses with the constraints.  
The first term of the Objective Function represents the distance between the 
experimental and the theoretical system responses. The terms inside the 
square bracket, which are multiplied by the factor R, represent the penalties 
associated to the constraints of the initial optimization problem. 
The transformed constrained problem is a series of unconstrained non linear 
optimization problems, which converges to the correct solution for R→∞. 
For each iteration with a fixed R the minimization of P is an unconstrained 
non linear optimization problem. By varying the R parameter, a different 
importance is given to the distance respect to the constraints. Actually, 
different R parameters could be introduced for each constraint, to specify 
the several contributions to the Objective Function.  
The penalty function P(hi ,vsj ,R) is minimized by using a Quasi-Newton 
algorithm .The particular algorithm used is  the Davidon–Fletcher-Powell 
(DFP) method (Reklaitis et al, 1990, Bras, 2000).  
 
3.1.3 Optimization algorithm  
 
The penalty method for constrained optimization does basically the 
following four steps: 
 
1) Find xt+1 such that P(xt+1, Rt) → min with Rt fixed. This step is performed 
with the Quasi-Newton method (DFP).  
2) If |(xt+1 - xt  )| <ε → terminate , else continue.  
3) If xt+1 is feasible and not at the boundary  terminate, else go (4) 
4) Rt+1 = dRt ⋅a  (a>1) , Rt+1 = Rt +dR, and go to (1) 
 
In this case x = (hi ,vsj). 
 
Step (3) is a monitor to see if the solution is an interior point, of the feasible 
space or a point which is infeasible or at the boundary of the feasible space. 
When the solution of the first iteration (x1) is an interior point regardless of 
the value of R, it is not necessary to increase R and to solve the problem for 
the next P(hi ,Vsj ,R) function again. The way the penalty function is built, a 
solution on the border, with a slack variable zero, is only possible if the 
unconstrained minimum for the original Objective Function  
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2),(exp is infeasible.  

If a minimum is an interior point, its location is independent of R, because 
the bracket operator ensures that the additive terms of the constraints for 
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such a point are all zero. If an infeasible solution or a boundary solution is 
found, the algorithm must continue to increase R .  
 
The unconstrained optimization in step 1 is performed with the following 
algorithm: 
 
1) Set iter = 0. 
2) Calculate ),( )( RxP k∇  
3) If 1

)( ),( ε≤∇ RxP k  then terminate, else continue 
4) If iter > itermax then terminate, else continue 
5) Calculate ),(),()( )()()()( RxPARxPxs kkTkk ∇⋅⋅∇= , where A(k) is 
calculated as  
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6) Find α(k) such that ( )( )RxsxP kkk ,)()()( ⋅+α  is minimized (line search). 
7) x(k+1) = x(k) + α(k) s(x(k)) . 
8) If ( P(x(k+1) ,R) < P(x(k),R)  ) then continue, else terminate 
9) If 2ε≤∆x  then terminate, else continue. 
10) k = k+ 1. Got to step 2 
 
The Optimization Algorithm has been implemented by the Author in 
Matlab, for solving the general problem of site characterization by means of 
Rayleigh waves. 
 
3.1.4 Numerical gradient 
 
The gradient of the Objective Function for this optimization is hard to 
evaluate symbolically. For this reason it was decided that the gradient is 
numerically computed. The gradient approximation is based on a forward 
difference approximation : 
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It must be said that the numerical calculation of the gradient is generally 
both time expensive and instable. The numerical accuracy depends on the 
increment ∆x, chosen to evaluate the derivatives. In this work the step 
increment ∆x varies within a certain range (5⋅10-3÷5), according to the slope 
of the Objective Function at the current point, in which the Objective 
Function is evaluated. A smaller value of ∆x corresponds to a higher 
absolute value of the components of the gradient. 
 
3.1.5 Line-search function 
 
The DFP algorithm needs a relative exact line-search, so that the Quasi-
Newton method converges in a good manner. An exact line-search, which 
does not relay on gradient information, such as the golden search method, 
on the other hand needs a lot of iterations, which is computationally  
burdensome. The trade-off  here is between achieving a very high 
convergence of the Quasi-Newton method at the cost of many iterations for 
the line search or avoiding too many line-search iterations at the cost of a 
deteriorated overall convergence of the Quasi-Newton method. At first in 
this project the use of a golden search was implemented, but the 
computational burden was too high for two reasons. First at the beginning of 
the iterations, the norm of the direction vector is very large, which indicates 
a very long direction vector and therefore the golden search had to scan a 
very long line, to find the minimum. Secondly it was noticed, that the 
minimum point is never very far away from the starting point of the line-
search . From this two facts the following strategy was implemented.  
At first we defined the maximum allowable step for each physical parameter 
in one iteration. This maximum step size can be set by the user, say for the 
shear wave velocities Vsmax=50 m/s and for the thicknesses   hmax=2.5 m . 
The line-search α(k) s(x(k)) is now constricted to α’s so that the maximum 
element for each set of physical parameters never exceeds  Vsmax  or hmax 
respectively.  
The second part of the strategy is to find a smaller interval for the golden 
search method. The interval is now divided into a certain number of 
subintervals p+1. At the beginning of each subinterval the objective function 
is evaluated and compared to the value of the objective function at the 
starting point of the line-search. (Fig. 3.1)  
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Figure 3.1: Line-search procedure: determination of the subinterval 
containing the minimum. 
 
As long as the value of the objective function decreases, the starting point of 
the next subinterval is investigated, as seen in fig. 3.1 from interval 1 to 4. 
When the objective function value increases, compared to the value of the 
previous point (form interval 4 to 5), the interval number is stored (m=5). 
As search interval for the golden section method, the start point of the 
interval m and the start point of the interval m-2 are used. In the example the 
interval for the search is the subinterval composed of the sub intervals 3 and 
4. In this manner only a fraction of the original global interval (from 1 to p 
in fig.3.1)  is searched by the golden search. The assumption for this method 
is obviously that the function is unimodal. When the evaluation of the first 
starting point has a higher objective function value than the starting point of 
the line-search, the first subinterval itself is divided into (p=1) subintervals 
and the search routine, to establish the search interval for the golden search, 
is started again on this space. This refinement of the interval is done at 
maximum 6 times, but the number of times can be modified by the user (see 
fig. 3.2).  
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Figure 3.2: Line-search procedure: the current point represents a local 
minimum. 
 
When the refinement procedure does not find an interval, the golden search 
is not initialized. The line-search terminates, without delivering a new 
minimum point in step 6. In this case the Quasi-Newton program stops to do 
any further iteration and uses the last point as the best result. This happens 
only when the direction vector and the gradient vector get really small and 
the algorithm is close to a local minimum.   
The algorithm which is described above is outlined below: 
 
1) Calculate   α1= Vsmax / max(SVs) . α2= hmax / max(Sh)  α=min(α1, α2), 
where Svs are the elements of the direction vector associated with the shear 
wave velocities and Sh are the elements associated with the thicknesses. Set 
ref=1.  
2) If α < 2 then α=2 
3)If ref <= 8  
Yes : αp=α / p, where p represents the number of subintervals and set n=1. 
No : terminate 
4) If (n<=p)  
Yes : evaluate P(x(0) + n αp

 s(x(0))), where x(0) is the starting point of the line 
search. 
No go to step 6  
5) If  P(x(0) + (n-1) αp

 s(x(0))) > P(x(0) + n αp
 s(x(0)))  
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Yes : set n=n+1 and got to step 4  
No :  go to step 6 
6) If n=1 
Yes : set αp=α, ref=ref+1 and go to step 3 
No: go to step 7. 
7) Start the golden search to find the local minima. 
 
The golden search also called the golden section search is outlined in 
(Reklaitis et al., 1990). The golden search is used at maximum for 15 
iterations to find the minimum. If the golden search does not converge in 15 
iterations, the average of the two points, which brackets the minimum is 
used as an approximation.  
This line search has proven to be useful in this optimization project. The 
general descend property of the Quasi-Newton method holds always true 
and the line-search is not too burdensome.  
 
3.1.6 Final word on the optimization code 
 
The optimization algorithm presented here is a straightforward 
implementation of the DFP method as main solver for a penalty approach. 
The biggest weakness of this program is the line-search function. The line 
search function was in most cases responsible for the termination of the 
optimization program. Any further improvements of this code should focus 
on the line-search function. 
 
 
3.2 Simulation analysis: Normally dispersive system 
 
Since the computational time to run one forward problem is so long, first an 
artificial case is studied. 
 

Layer h(m) Vp (m/s) Vs (m/s) Mass density ρρρρ (Kg/m3) 
1 2 200 100 1800 
2 5 400 200 1800 
3 7 700 350 1800 

Half-space ∞ 1200 600 1800 
 

Table 3.1: Characteristics of the artificial case. 
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In the sequel the mass density ρ and the compression wave velocity Vp will 
not be repeated, since they will be hold as constant parameters in the 
sensitivity analysis. 
 For the considered system (table 3.1) the apparent dispersion curve (fig.3.3) 
is computed by means of the new method described in Chapter 2. The task 
now is to solve the inversion problem for a disturbed set of parameters and 
see if the algorithm converges to the right set of values. Another reason is to 
gain insight and experience with the inversion problem. For example, before 
doing this step, it was not known if the problem has only one unique 
minimum or several minima. For all these simulations the maximum 
assumed depth is 20 m. The system is made of only three layers and 
therefore it is described by seven variables, i.e. three thicknesses and four 
shear wave velocities. The test case is kept with such a small number of 
variables on purpose, so that the overall computational time is not 
excessively large.  



                  __        Chapter 3: Inversion Procedure: Stiffness Profile_____ ____________ 
 

 128

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3: Theoretically simulated apparent dispersion curve for the 
system described in table 3.1. 
 
3.2.1 Solving simultaneously for thicknesses and shear wave velocities. 
  
In the best of all cases, the algorithm could find the correct set of 
thicknesses and shear wave velocities.  
 

Layer number Thickness h (m) Shear wave velocity Vs 
(m/s) 

1 2.3 90 
2 4.6 240 
3 6.8 330 

Half space - 650 
 
Table 3.2: Perturbed system: both thicknesses and shear wave velocities 
vary. 
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The algorithm was initialized with a disturbed set of value. The initial 
values for this case are given in table 3.2. The initial values are no more 
than 20% different from the correct values. The problem starts in the 
neighborhood of the correct solution. The program terminates after 25 
iterations, because the line-search function fails to find in the 25th iteration a 
better minimum. The best set of values in this case are given in table 3.3. 
 

Layer number Thickness (h) [m] Shear wave velocity 
(vs)[m/s] 

1 4.2 100 
2 14.7 237 
3 2.5 330 

Half space - 611 
 
Table 3.3: Final configuration inverting for both thicknesses and shear 
wave velocities. 
 
The value of the objective function for each iteration is shown in figure 3.4 . 
The objective function value decreases from 9.4 104  to 48.58. The 
optimization gives a very good match between the dispersion curves of the 
inversion process and that one of the forward simulation.  
The results are shown in figure 3.5.  In figure 3.5 the  green circles represent 
the data of the optimization result, the crosses represent the dispersion curve 
of the artificial case and the stars represent the dispersion curve of the initial 
perturbed parameter set.  As the figure shows, both curves are very well 
matched, despite the thicknesses of the profile, at the end of the 
optimization differ a lot from the true profile. The shear wave velocities of 
the first layer and the half-space are close to the true values. The shear wave 
velocities of the second and third layers are barely different from the initial 
starting configuration. The reason for this behavior is that the shear wave 
velocity of the first layer is mostly responsible for the asymptotic behavior 
of the apparent dispersion curve, i.e. the values of the phase velocity 
beyond 35 Hz. 
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Figures 3.4, 3.5: Objective function for the inversion, starting from the 
configuration given in table 3.2 and Dispersion curve: initial configuration 
(blue stars), final configuration (green circles), true profile (plus and 
continuous line). 
 
The half-space influences mostly the points at the low frequencies, because 
low frequency waves penetrate  into deeper layers. The objective function 
for the last iteration was not zero, which indicates that the profile is not the 
true profile, but one which approximates the apparent curve very well. In 
terms of the optimization problem, this solution corresponds to a local 
minimum. This fact can be concluded from these data, because the true 
profile with an objective function value of zero is known. The program 
converges to a local minimum, with totally different values for the 
thicknesses and somewhat different values for the shear wave velocities. 
Additional factors, which point to the thesis of local minima, are that the 
objective function value for the last four iterations hardly changes. The  
norm of the gradient vector is 105  at the first iteration and at the last 
iteration is 77.7. The algorithm terminates, because the line-search function 
does not find any lower point in the vicinity of the last iteration point. In 
order to investigate further the behavior of this optimization problem, the 
program is used with a another starting point. 
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Table 3.4 gives the data for the new starting configuration. 
 

Layer number Thickness h (m) Shear wave velocity Vs 
(m/s) 

1 1.2 100 
2 2.0 300 
3 2.0 400 

Half space - 600 
 
Table 3.4: New perturbed system with both thicknesses and shear wave 
velocities varied. 
 
The starting configuration has the correct shear wave velocities for the first 
layer and the half-space, but very distant parameters for all the thicknesses 
and the shear wave velocities for layers two and three.  The reason for this 
starting point is to see how the thicknesses and the middle layer shear wave 
velocities change during the inversion process. From the previous 
optimization and other tests it was observed that the program always 
converges to the correct shear wave velocities of the first layer and the half-
space. Therefore these two parameters are set to their correct values in order 
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to see the changes in all other parameters. The result of this optimization 
after 12 iterations  is shown in table 3.5. 
 

Layer number Thickness h (m) Shear wave velocity Vs 
(m/s) 

1 2.9 100 
2 9.8 295 
3 2.3 399 

Half space - 600 
 
Table 3.5: Final profile inverted, starting from the initial profile in table 3.4. 
 
The objective function value decreases from 7·105  to about 450. The 
algorithm apparently runs into another local minimum. The two examples 
presented here and further numerical experiments convinced us, that the 
problem with both unknown layer thicknesses  and unknown shear wave 
velocities has multiple local minima and it is very hard to find the true 
global minimum. In this case the global minimum is known a priori and 
therefore the results can be judged accordingly. In real cases the best match 
is not known and any solution has to be judged very carefully. Another 
disturbing fact is that the solutions found in the two presented optimization, 
are quite far from the true solution, especially for  the layer thicknesses 
information. Only  the last and the first shear wave velocities of the profile 
are correctly found by the inversion.  
 
3.2.2 Sensitivity analysis 
 
From the previous optimizations it was concluded that the incorrect shear 
wave velocity profile moves the local minimum very far away from its true 
position. In order to investigate this aspect, the shear wave velocity profile 
was held constant with small disturbed parameters and the thicknesses of the 
third layer was held constant at the correct value. The thicknesses of layer 1 
and 2 were varied from 1 to 3 m and from 4 to 6 m respectively. The 
situation is shown in table 3.6. 
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Layer number Thickness h (m) Shear wave velocity Vs 

(m/s) 
1 X 100 
2 Y 220 
3 7 330 

Half space - 600 
 
Table 3.6: Influence of a slight variation of the shear wave velocity profile 
on the position of the global minimum. 
 
 

 
Figure 3.6: Objective function when the shear wave velocity profile is 
slightly changed from the true configuration. 
 
The objective function is plotted as a 2-D function of X and Y. The plot is 
shown in figure 3.6. The objective function does not have a local minimum 
in the vicinity of the true layer profile at 2 and 5m. The plot shows that the 
objective function surface has probably a minimum for large values of the 
thickness of layer 2, as demonstrated in the two profiles found in the 
previous section by the algorithm. From this it can be concluded, that a 
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small perturbation in the shear wave velocities generates an objective 
function surface with a minimum very far away from the true value.  
If an analogous experiment is done with varied layer thicknesses and fixed 
shear wave velocities, the result is that the minimum is not at its true 
position but relatively close to it. Precisely the layer thicknesses are held 
constant at values slightly different from their true values.  
 

Layer number Thickness h (m) Shear wave velocity Vs 
(m/s) 

1 2.2 100 
2 4.8 X 
3 7.3 350 

Half space - Y 
 

Table 3.7: Influence of slight perturbation in the thicknesses of the system. 
 
The shear wave velocity of the half-space ranges from 570 m/s to 630 m/s 
and the shear wave velocity of the second layer from 170 m/s to 230 m/s. 
The situation is described in table 3.7. In figure 3.7 the objective function is 
plotted as a function of X and Y. The figure shows that the minimum of the 
objective function value is approximately at X=200 m/s and Y=600 m/s, 
which are the true values of this profile. A plot with finer increments would 
probably show that the minimum is at slightly different values for X and Y. 
The objective function value at the minimum is about 125.8. The position of 
the minimum is on the same position as in the case when the true layer 
profile is used. Compared to the previous investigation, the problem is less 
sensitive to changes in thicknesses than in shear wave velocities.  
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Figure 3.7: Objective function when the thicknesses are slightly perturbed 
from the true values. 
 
In contrast to the other case a small perturbation in the thicknesses does not 
generate an objective function surface with a minimum at a very different 
position, but a minimum very close to the true correct one. The objective 
function value is not as high for the true minimum position as in figure 3.7, 
where at the correct position the objective function is around 3000. 
Since it has been shown that, for small perturbations of the thicknesses hi, 
the position of the best shear wave velocities hardly changes, the question 
arises what happens if the layer thicknesses profile is seriously different 
from the actual profile.  
To answer this question, the same examination as above is repeated, but this 
time with a significantly disturbed layer thicknesses profile.  

Shear wave velocity Half-
space(m/s) 

Shear wave 
velocity 2nd 

layer 
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Layer number Thickness h (m) Shear wave velocity Vs (m/s) 

1 1.2 100 
2 6.8 X 
3 9.3 350 

Half space - Y 
 
Table 3.8: New starting configuration with strong perturbations for the 
thicknesses. 
 
 

 
 
Figure 3.8: Objective function with a strong perturbation of the true values 
of the thicknesses. 
75 
 
The difference between the actual layer thicknesses profile and the true one 
is between 36% and 55%. The objective function is again plotted as a 
function of X and Y, as shown in figure 3.8. The minimum is at X=187.5 
m/s and Y=612.5 m/s, with an objective function value of 7.28·103  . The 
position of the minimum in this case is only 6.5 % and 2.1 % away from the 
true profile. This is a noteworthy property, because this shows that the 

Shear wave velocity Half-
space(m/s) 

Shear wave 
velocity  
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system is very insensitive to the wrong layer thicknesses information. The 
inversion still converges to a very close shear wave velocity profile.  
 
3.2.3 Solving for layer thicknesses with fixed shear wave velocities 
 
The next numerical evaluation is done with fixed shear wave velocities at 
their true values.  
 

Layer number Thickness h (m) Shear wave velocity Vs (m/s) 
1 2.1 100 
2 5.3 200 
3 6.8 350 

Half space - 600 
 
Table 3.9: Initial point: fixed shear wave velocities and perturbed 
thicknesses. 
The optimization uses only the layer thicknesses as decision variables. As 
initial guess a perturbed profile as shown in table 3.9 is used.  
The program has solved the inversion problem correctly within 17 
iterations. The last profile of layer thicknesses is the correct true profile as 
shown in table 3.10: 
 

Layer number Thickness h (m) Shear wave velocity Vs (m/s) 
1 2.0 100 
2 5.0 220 
3 7.0 330 

Half space - 600 
 
Table 3.10: Inverted profile with correct fixed shear wave velocities and 
varying thicknesses. 
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Figure 3.9: Objective function for the inversion with shear wave velocities 
fixed at their correct values and varying thicknesses. 
 
In figure 3.9 the objective function as a function of the iteration number is 
shown. The objective function has decreased from 537 to 2·10-5 . The 
program stops after 17 iterations, because the gradient vector is smaller than 
the defined value of ε1.  
The conclusion from this example and other numerical evaluations is that 
the objective function in this case has only one minimum and this is at the 
position of the true layer thicknesses profile.  
 
3.2.4 Solving for shear wave velocities with fixed layer thicknesses 
 
The last investigation for the artificial case is to solve for the shear wave 
velocities with fixed layer thicknesses. The layer thicknesses are fixed at 
their true values and the shear wave velocities are disturbed from their true 
values. The first optimization in this case has the following starting point: 
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Layer number Thickness h (m) Shear wave velocity Vs (m/s) 
1 2 140 
2 5 210 
3 7 330 

Half space - 640 
 
Table 3.11: Inversion with correct fixed thicknesses and shear wave 
velocities as variables. 
 
The starting point is not too far away from the true shear wave velocity 
profile. After 21 iterations the program has converged to the correct shear 
wave velocity profile. The objective function has decreased from 4·104 to 
0.21. Table 3.12 shows the final result of the optimization for this case. The 
rate of convergence, measured by the objective function, is very large at the 
beginning and relatively slow at the end, as figure 3.10 shows.   
 
 

Layer number Thickness h (m) Shear wave velocity Vs (m/s) 
1 2 100.0 
2 5 199.8 
3 7 350.3 

Half space - 600.3 
 
 
Table 3.12: Inverted profile corresponding to the starting point in table 
3.11. 
 
This result shows that for the correct layer thicknesses profile, the shear 
wave velocity profile converges to its true profile. The question here is if 
this is a global property (behavior) or a local one, since the initial guess is 
not very far away from the true solution.   
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Figure 3.10: Objective function when inverting for only the shear wave 
velocities. 
 
In order to asses if the above described behavior is valid only locally around 
the true set of parameters or also true for a more distant starting point, the 
same case is solved again with another starting point.  
 

Layer number Thickness h (m) Shear wave velocity Vs (m/s) 
1 2 50 
2 5 180 
3 7 400 

Half space - 750 
 
Table 3.13: Inversion with strongly perturbed shear wave velocities and 
fixed thicknesses at their true values. 
 
This starting configuration is quite different from the true one. For the last  
shear wave velocity the difference is 150 m/s. The objective function value 
for this starting point is about 4.3·105. It has been observed that the Quasi-
Newton method for objective function values larger than 106 fails to 
converge. The problem of convergence if the optimum is relative far away is 
also mentioned in the literature. For this reason, a starting point with an 
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objective function value lower than  106 has been selected. The program for 
this starting point converges to the correct solution within 20 iterations. 
Table 3.14 shows the final shear wave velocity profile for this run.  
 

Layer number Thickness h (m) Shear wave velocity Vs 
(m/s) 

1 2 99.4 
2 5 201.8 
3 7 351.0 

Half space - 597.4 
 
Table 3.14: Final profile for the starting profile in table 3.12. 
 
The error of the last iterations is smaller than 0.5 %. The objective function 
value for iteration 20 is 17.67. The objective function value has decreased 
within the first 7 iteration down to about 140. Figure 3.11 shows the 
dispersion curve of the forward simulation as well as the dispersion curve of 
the profile of the starting point and the dispersion curve after 7 iterations.  
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Figure 3.11: dispersion curves: true profile, initial profile (green stars) and 
final profile (dots). 
 
As the figure above shows,  the dispersion curve of the starting point (*) is 
very far apart from the true dispersion curve (line). After 3 iterations the 
dispersion curves have become relatively close together ( +). At 7 iterations 
the difference between the dispersion curves  can hardly be distinguished. 
The improvement from iteration 7th  to the 21st iteration is hardly 
recognizable and can only be judged by the value of the objective function.  
 
3.2.5 Conclusions from simulation 
 
The inversion with both perturbed sets of parameters, layer thicknesses  and 
shear wave velocities, has never given the correct true profile. Both 
described examples and further numerical experiments show strong 
evidence, that the problem has multiple local minima. Another problem in 
this situation is that the shear wave velocities of the middle layers have very 
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little influence on the objective function. The shear wave velocities of the 
first layer and the half space influence the objective function to a far greater 
extend than any other parameter in the system. The half space shear wave 
velocity determines the highest phase velocity of the dispersion curve and 
the shear wave velocity of the first layer determines the asymptotic behavior 
of the dispersion curve. These two facts combined and fact that the system 
is so sensitive to the wrong shear wave velocities, let the program run into 
local minima very different from the true solution. The later two 
investigations clearly point to a strategy, to achieve a good inversion result. 
When either shear wave velocities or layer thicknesses are held constant at 
their true values, the other set of parameters has converged to its correct 
profile.  
The strategy for a proper inversion process is to fix the thicknesses of the 
layers and solve for the best possible guess of the shear wave velocities. 
This approach has two advantages. 
 First an incorrect guess for the thicknesses information does not cause the 
program to converge to a complete wrong shear wave velocity profile, but to 
a profile, which is close to the “true” or best one.  
In addition sometimes a guess from other geotechnical site characterization 
techniques exists and this can be used for a layer profile guess. Additionally  
from a geotechnical point of view, it is more interesting to invert for the 
shear wave velocities (layer stiffnesses) rather than the layer thicknesses. 
This is the same order of magnitude as in the sensitivity plot (figure 3.5). 
Another fact of the optimization is that all the solutions have converged to 
an interior point of the domain. In all casees, solving for both thicknesses 
and shear wave velocities or for one of these, no optimization ever has came 
close to the boundary of the space. Therefore the penalty method as such is 
not really used. There is no need for an increase of R, as well as the penalty 
term does not influence the objective function value. The optimization is the 
same as for an unconstrained problem. In real cases reported in Chapter 5,  
with  measured data, the same fact has been observed. Despite setting up of 
the problem as a constrained optimization, the actual problem  has turned 
out to be equivalent to an unconstrained optimization. This is actually good 
news, since each run of the optimization code takes between 6 and 9 hours 
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to compute between 15 to 20 iterations. For this reason the problem is less 
computationally demanding as initially assumed.    
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3.3 Simulation analysis: Inversely dispersive system 
 
The following example will be considered, in order to show, on one 
hand, the efficiency of the inversion algorithm for inversely dispersive 
systems and, on the other hand, to evidence the existence of local minima 
of the objective function. The characteristics of the system are illustrated 
in the table 3.15 below: 
 

Layer h(m) Vp (m/s) Vs (m/s) Mass density ρρρρ (Kg/m3) 
1 5 900 600 1800 
2 5 600 400 1800 

Half-space ∞ 1200 800 1800 
 

Table 3.15: Characteristics of the inversely dispersive system. 
 
The system in table 3.15 can be representative of a profile with either a 
stiff surface layer or a soft layer trapped between two stiffer ones. As a 
consequence of the previous sensitivity analysis, the inversion algorithm 
has been run, inverting for only the shear wave velocities at the correct 
fixed values of the thicknesses. The starting initial configuration is 
definitely distant from the true profile. The results are excellent after 6 
iterations, with a final profile that is very close to the true profile, as 
shown in the table 3.16 and fig.3.12. 
 

Starting profile Vs (m/s) 2nd iteration 3rd 4th 5th Final profile
700 700 652 615 613 612 
500 472 434 401 399 399 
800 800 798 779 778 778 

 
Table 3.16: Results of the inversion process at all the iterations. 

 
The relative error between the final profile and the true profile is less 
than 3 % and the match between the final dispersion curve and the true 
dispersion curve is very good (see fig.3.13). The objective function 
lowers from a value of 1.02⋅105 to 1200. This example allows us to be 
aware about the existence of local minima of the objective function. In 
fact, by plotting the contour plot of the objective function, varying two of 
the three shear velocities and fixing the other shear wave velocity, it can 
be seen that other local minima may exist in addition to the global 
minimum.  
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Figure 3.12: Results of the inversion process: initial profile (dash 
triangles), final profile (dashed squares), true profile (line). 
 
It could happen that a local minimum exists near the global one (see 
fig.3.14), with no significant change by an engineering point of view. But 
other local minima generally exist that are quite distant from the global 
minimum and would lead to erroneous final results (figg.3.14 and 3.15). 
From this example it can be inferred: first that, if a local search technique 
is used, then the final profile depends on the starting configuration and 
secondly that the global minimum is likely to be reached, only combining 
a global search technique with a local one, if a good starting profile is not 
available a priori. 
Anyway the validity of the optimization algorithm and of the whole  
inversion method have been checked even in inversely dispersive 
systems, and they have been successfully applied to real sites as shown in 
Chapter 5. 
 
 
 
 
 

Inversely dispersive case

0
100
200
300
400
500
600
700
800
900

0 5 10 15 20 25

Depth (m)

Sh
ea

r v
el

oc
ity

 V
s 

(m
/s

)

True profile
Last iteration
First iteration



                ______     Chapter 3: Inversion Procedure: Stiffness Profile______________ 
 

 147

 
 

 
Figure 3.13: Dispersion curves: true profile(red dots), initial profile(blue 
plus), final profile(green circles). 



                ______     Chapter 3: Inversion Procedure: Stiffness Profile______________ 
 

 148

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.14: Contour plot of the objective function: several local minima 
exist. 
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Figure 3.15: Contour plot of the objective function: several local minima 
exist. 
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Chapter 4 
 
 
 

Inversion Problem: Damping Ratio profile 
 

Introduction 
 

In this Chapter the theory of visco-elasticity will provide us with a powerful 
model for taking into account the dissipative properties of the soil under 
investigation. Precisely a Coupled and an Uncoupled procedures can be 
followed for inverting the dispersion and attenuation relations of the system 
in order to evaluate the damping ratio profile with depth. A hybrid approach 
is also proposed, which on one hand relys on a coupled evaluation of the 
experimental dispersion and attenuation relations and on the other hand is 
based on an uncoupled simulation of the theoretical dispersion and 
attenuation relations performed for the inversion process. 
 
 
4.1 Correspondence Principle of Visco-elasticity 
 
Because of the way the Rayleigh dispersion relation (1.42) in Chapter 1 has 
been evaluated, it is a complex function with real independent variables, 
since we deal with real positive frequencies and wave numbers and so are 
all the mechanical properties. In a more general framework of  visco-elastic 
behaviour of the soil, complex values of the body velocities are used and 
complex wave numbers are expected as roots of (1.42), in order to justify 
dissipative viscoelastic phenomena (Lai, 1998, Christensen, 1971). In fact a 
complex wave number: 
 

ImRe
* ikkk +=         (4.1) 

 
gives rise to a wave that propagates with a phase velocity: 
 

Rek
c ω=           (4.2) 

and decays exponentially along the direction of propagation x with the 
spatial attenuation coefficient: 
 

Imk=α          (4.3) 
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given by the imaginary part of the complex wave number, so that a plane 
wave can be written as: 
 
 
 

(4.4) 
 

 
where d̂  and p̂  are the unit vectors that indicate the directions of particle 
motion and propagation of the phase respectively. 
 Of course (4.4) has a physical sense only for positive values of α, otherwise 
the perturbation would increase indefinitely with the distance x. It is worthy 
to define the Attenuation Relation obtained by representing the attenuation 
coefficient as a function of the frequency. This Attenuation curve is 
somewhat analogous with the Dispersion Relation, except that it is inverted 
for determining the damping ratio profile as will be explained in the sequel. 
Without going deeply into details we will briefly introduce the main 
concepts beyond the theory of linearly visco-elasticity and its consequences 
when applied to wave propagation. 
A linearly visco-elastic material manifests deformations that are linearly 
related to the stresses induced by the loads and in addition they depend on 
the history of the loading process. 
This means that inside the material subjected to an instantaneous strain, kept 
constant in time, a relaxation of the instantaneous stress response will occur. 
On the contrary if an instantaneous stress state, kept constant in time, is 
created then the creep phenomenon will be detected, since the instantaneous 
strain response will increase asymptotically with time towards a finite value 
of deformation. In mathematical terms the above explained behavior can be 
written as (Achenbach, 1999): 
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where GB(t) and GS(t) are the relaxation functions in bulk and shear 
respectively. 
If  we consider a steady-state strain deviator harmonic in time: 
 

ti
ijij eee ω*=         (4.6) 
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then we can assume that it has been generated by a steady-state time 
harmonic stress deviator: 
 

ti
ijSij eeGs ωω ** )(2=        (4.7) 

 
where G*

S(ω) is a complex modulus depending on the frequency of 
excitation: 
 

)()()( '''* ωωω SSS iGGG +=       (4.8) 
 
By means of the complex modulus above defined it is possible to specify the 
stress state in (4.5) for the steady-state harmonic case as: 
 
 

[ ] ***** )(2)(
3
2)( ijSkkSBij

ti
ij GGGe εωεωωδτ ω +



 −=    (4.9) 

 
If we substitute (4.4) into (4.9) and together into the equation of motion 
(1.10) and no body forces are present we get (Achenbach, 1999): 
 

0ˆ)ˆˆ()](
3
1)([ˆ])([ 2**22* =⋅++− pdpkGGdkG SBS ωωρωω   (4.10) 

 
From (4.10) two considerations can be made. First in an unbounded visco-
elastic region both P and S waves can exist as in the elastic case. Secondly 
an intrinsic non-linear relationship is manifest between the wavenumber k 
and the frequency ω, so that visco-elastic waves are both attenuated and 
dispersive.  
For P and S waves the phase velocities given by (4.10) are: 
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As it is known (see for ex. Aki and Richards, 1980) an intimate relation 
exists between the real and the imaginary parts of the complex moduli 
appearing in (4.11) or (4.12). It comes out from the principle of causality 
that the real and the imaginary parts of the complex moduli form a pair 
Hilbert Transforms. As a consequence the attenuation coefficient α and the 

phase velocity 
Rek
ω  in (4.4) are strictly linked and the important statement 

follows that in visco-elastic media the dissipation of energy is accompanied 
by material Dispersion (Lai, 1998). Hence in layered visco-elastic media at 
least two types of Dispersion phenomena have to be discerned: the 
Geometrical Dispersion caused by multiple reflections and refractions at the 
interfaces and the Material Dispersion due to the energy losses predicted by 
the visco-elastic theory inside the material. 
At this point the interesting and powerful principle of correspondence 
between elastic and visco-elastic solutions to the dynamic problem will be 
introduced. It says that the one-sided Laplace transform in time of the visco-
elastic solution to a dynamic problem can be obtained from the one-sided 
Laplace transform in time of the correspondent elastic solution to the same 
dynamic problem. An essential condition to be respected for the 
correspondence principle to hold is having time-invariant boundary 
conditions for the boundary value problem (Christensen, 1971). In fact if we 
apply the one-sided Laplace transform in time to both (4.5) and (1.6) we 
obtain (4.13) and (4.14) respectively: 
 
 

ijSkkSBijij sGsGsG εεδτ )(2)(
3
2)( +



 −=     (4.13) 

 

ijkkijij B εµεµδτ 2
3
2 +



 −=       (4.14) 

 
By comparing (4.13) and (4.14) it is evident that the visco-elastic solution 
can be got from the correspondent elastic solution by simply substituting the 
real moduli with the correspondent complex moduli. 
A simple application of the visco-elastic correspondence principle to the S 
and P wave velocities into an unbounded visco-elastic region leads to the 
same results reported in (4.11) and (4.12) starting from the knowledge of the 
corresponding elastic solution. 
By means of the visco-elastic correspondence principle it is quite easy to 
write the displacement field generated by a surface point  harmonic source 
in a visco-elastic layered medium (Lai, 1998). The solution in terms of 
vertical displacements for the elastic case (2.10) is herein reported: 
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or in equivalent form (Lai, 1998): 
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in which S(x,z,ω) is the Rayleigh Geometrical Spreading function, that 
together with the ψβ(x,z,ω)  in the exponential term considers the 
combination of all Rayleigh modes when thought as a whole apparent 
propagating disturbance. The expressions for S(x,z,ω) and ψβ(x,z,ω) are 
(Lai, 1998): 
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The solution for the visco-elastic case corresponding to (4.15) and (4.16) are 
(Lai, 1998): 
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and 
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that are valid only into subsets of the complex domain where (4.19) and 
(4.20) are well-defined, single-valued and continuous functions of the 
independent complex variables. 
In (4.19) the complex wave number kj

* appears that is a complex root of the 
Rayleigh Dispersion Relation as discussed at the beginning of this section. 
In (4.20) it is no longer possible to discern the phase as the simple product 
between a wave number and the distance, but a complex-valued phase angle 
is found. Actually it could be defined an effective (Lai, 1998) or more 
properly an apparent wave number as: 
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that is correlated to an apparent wavelength: 
 

f
zxcapparent

apparent

),,( ω
λ =       (4.22) 

 
that represents how the spatial periodicity appears when considering the 
whole disturbance, made of all the Rayleigh modes. 
 
 
4.2 Coupled versus Uncoupled  Inversion 
 
 
There are two strategies for determining the Damping ratio profile. The first 
one is the Coupled Inversion procedure, that consists of simultaneously 
inverting the Dispersion and the Attenuation curves for evaluating at the 
same time the shear wave velocity and the Damping profiles. The second 
strategy is called Uncoupled procedure and allows for the Damping ratio 
determination once the stiffness profile has been separately determined. 
In the following both of them will be explained. 
The Coupled and Uncoupled strategies have been thought and developed by 
Prof. Rix and his co-workers (Foti, Lai, Roma, Spang,) at Georgia Institute 
of Technology of Atlanta in recent years. The Author has been collaborating 
with them in implementing, improving and applying the two strategies to 
real sites (Rix et al., 2001b). 
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The Damping ratio is commonly defined by means of the total energy 
dissipated and the averaged energy stored in a cycle of harmonic loading, 
that for a visco-elastic model is proportional to the ratio between the real 
and imaginary parts of the complex modulus (Lai, 1998): 
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A correlation exists between the damping ratio and the so called quality 
factor Q=1/2D more used in geophysical literature. 
The inherent link among the complex wave velocity V*, the phase velocity 
V and the attenuation coefficient α can be clearly understood by writing the 
complex wave velocity using (4.1)÷(4.4): 
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If we consider that the complex wave velocity depends on the damping ratio 
as (Lai, 1998): 
 
 

)1(
)1(

2
*

D
iDVV

+
−=         (4.25) 

 
by comparing (4.24) and (4.25) an important relation comes out among the 
attenuation coefficient, the phase velocity and the damping ratio: 
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V
⋅=        (4.26) 

 
This relationship clarifies the reciprocal influence between the dispersion 
and the attenuation relations. 
In principle both the stiffness and the damping ratio are frequency 
dependent, since they depend on the dispersion and attenuation relations, 
but frequency independent stiffness and damping ratio profiles are 
commonly assumed in the frequency range where the earthquake 
engineering applications are of concern. In practice the stiffness and the 
damping ratio profiles are supposed to be evaluated at a frequency of 
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reference and their values at other frequencies are determined by means of a 
material dispersion relation. For more details the reader is referred to (Lai, 
1998). 
 
4.3 Uncoupled  Inversion 
 
 
In the Uncoupled procedure the first step consists of inverting the Rayleigh 
Dispersion Relation in order to determine the stiffness profile, neglecting 
the influence of energy dissipation during the propagation. This assumption 
does not compromise the results on the inverted stiffness profile, since at the 
level of strain that is reached in the experiments (less than 10-6%÷10-3% 
depending on the material) the damping ratio is lower than about 5% and the 
coupling effects between Material and Geometrical Dispersions are of less 
concern (Santamarina and Stokoe, 2001). 
Materials that show this kind of behaviour are typically indicated as weakly 
dissipative media (Lai,1998). 
Consider the complex displacements on the free surface for a visco-elastic 
layered medium (4.20) and make the following assumptions: 
1) during propagation only the predominant Rayleigh mode is considered in 
evaluating the complex phase angle Ψ*, but all modes are included in 
calculating the geometrical spreading function S*(x,z,ω). 
2) for weakly dissipative media substitution of the visco-elastic geometric 
spreading function S*(x,z,ω) with the corresponding elastic one S(x,z,ω) 
does not imply appreciable error (Lai, 1998). 
 
The first statement means that the complex phase angle can be substituted 
by an explicit dependence of the phase upon the distance from the source: 
 

xzkzx ⋅≅ ),(),,( ** ωωψ        (4.27) 
 
The second hypothesis states that: 
 

( ) ( )ωω ,,,,* zxSzxS ≅        (4.28) 
 
 
 From the above simplifications the displacements in (4.20) can be rewritten 
as: 
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This expression is the same as (4.4) if we expand the complex wave number 
k* that appears in the exponent. It is worthy to underline that the geometrical 
spreading function S(x,z,ω) is known only if the stiffness and the thickness 
profiles are known. So in the Uncoupled procedure, once the stiffness and 
the geometry have been evaluated, only the damping ratio profile remains to 
be determined. 
With regard to this purpose the following relationship among the attenuation 
curve, the P and S wave velocities and the shear damping ratio Ds profiles 
will be used (Lai, 1998): 
 
 

(4.30) 
 
 
in which α(ω) is the attenuation coefficient, cR is the Rayleigh phase 
velocity, Vp and Vs are the body velocities, k is a constant ratio between 
volumetric and shear damping ratios and Ds is the shear damping ratio. The 
subindex i refers to the generic layer. 
It has been shown (Spang, 1995)  that the influence of the value of k on the 
inverted damping ratio profile is negligible, that is in agreement with the 
fact that the dispersion relation of Rayleigh waves is relatively insensitive to 
variations in the Vp profile. Since the value of k ranges between 0 and 1 
(Hermann and Mitchell, 1975): 
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a value of k=1 has been chosen for the next analyses. 
Formula (4.30) can be expressed in matrix form as: 
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where [G]=MxN is a matrix that depends on the partial derivatives of the 
Rayleigh phase velocity with respect to the body velocities profiles, Ds=Nx1 

is the vector of damping ratios, α=Mx1 is the attenuation curve. M is the 
number of frequencies and N is the number of layers considered. 
In the expression (4.32) the knowledge of the Rayleigh dispersion relation 
and of the body velocities profiles allows for the calculation of the matrix 
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[G], so that the shear damping ratio profile Ds can be inverted if the 
attenuation curve α is available. 
The inversion can be achieved by means of any proper inversion algorithm, 
that works well for the particular kind of inversion problem. Rix and his co-
workers (Rix et al., 2001) propose a constrained linear inversion algorithm 
(Constable et al., 1987) that has been used for all the sites investigated and 
reported in Chapter 5. The strategy of the inversion consists of finding the 
optimal set of damping ratios, that minimises a multi-objective function, 
made of two components. The first component is the roughness of the 
damping ratio profile, defined as (Constable et al., 1987): 
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This property refers to the smoothness of the inverted profile and it is based 
on the idea that it is more probable to encounter profiles whose mechanical 
properties vary gradually rather than profiles with abrupt changes in the 
characteristics. In the opinion of the Author this idea can be accepted for 
most of the sites, especially for normally dispersive sites, but there may 
exist situations in which this strategy causes incorrect  results (Hebeler, 
2000) and a different algorithm, such as the one proposed in Chapter 3, 
would be more appropriate. 
The second component of the objective function is the distance between the 
experimental and the theoretically inverted shear damping ratio profile in a 
weighted least-squares sense: 
 
 

2
sWGDW −= αη        (4.34) 

 
where W=diag{1/σ1 1/σ2 1/σM} is a diagonal MxM  weighting matrix and σ 
is the standard deviation associated with the uncertainties in the measured 
experimental attenuation curve. In the sequel it will be shown how to 
evaluate the variance σ2 by means of the coherence associated to the 
measured signals. It is required that the distance defined by the Euclidean 
norm in (4.34) be smaller than an arbitrarily assigned value η*. 
The multi-objective function is given by the sum: 
 

)( *ηηµ −⋅+= RObjective       (4.35) 
 
where the smoothing parameter µ has the important role of giving a 
different weight to the first and second components of the objective 
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function. By varying the smoothing parameter inside a certain range a 
regularisation  of the objective function is reached with a smoothing effect 
on the ripples. This effect makes it possible to overcome the intrinsic 
limitations of a local search technique when dealing with an objective 
function, which is characterised by the presence of quite close local minima 
in the space of the variables. As a consequence the probability of finding a 
global optimum increases. 
For the purpose of solving the above explained optimisation problem and 
finding the optimum of the objective function (4.35) the method of 
Lagrange multipliers can be adopted (Rix et al., 2001): 
 

α
µ

WWGWGWGD TTT
Soptimum )(])(1[ 1−+∂∂=     (4.36) 

 
where µ is the Lagrangean multiplier that can be chosen arbitrarily among 
all the possible solutions which assure a positive value of the damping ratios 
of each layer. The symbol ∂  denotes a matrix NxN given by: 
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      (4.37) 

 
In the opinion of the Author the subjectivity in choosing the parameter µ, 
that is the most reliable damping ratio profile, on one side offers the 
advantage of  the direct judgement of an expert operator but on the other 
hand inevitably causes an uncertainty in the final solution. In order to 
overcome the embarrassment in the choice, the value of the parameter µ 
could be taken, that ensures both positive damping ratios and minimum 
misfit error. This criterion does not always guarantee the most physically 
reasonable profile as it will be shown in Chapter 5. 
The only ingredient that is needed for using formula (4.30) is the 
experimental attenuation curve α(ω). 
The experimental determination of the attenuation curve is conceptually 
easy to understand, but the actual handling of the measured data needs 
particular attention, since the final inverted damping ratio profile is 
significantly influenced by the experimental attenuation curve. 
If only the experimental attenuation curve is required the procedure consists 
of comparing the absolute values of the experimental and the theoretical 
Transfer Functions of the system by means of a regression analysis. 
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If both the attenuation and dispersion curves are needed then the Transfer 
Functions as complex quantities are considered instead of their absolute 
values. 
The absolute value of the experimental vertical displacement on the free 
surface of the system is given by: 

 
         (4.38) 

 
 
in which C(ω) is the calibration factor of the receivers (see Chapter 5 for 
more details). 
The spectrum of either accelerations or velocities in (4.38) can be 
determined from the measured particle accelerations or velocities 
respectively at a finite number of stations on the free surface of the layered 
half-space.  
The experimental Transfer function can be obtained from the displacements 
(4.38) and the measured input by means of : 
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In the formula  (4.38) the same hypothesis as in section (2.6) has been 
assumed about the stationariness of the travelling perturbance. Such an 
assumption may be unrealistic for the whole signal, but it represents a good 
approximation nearby the maximum point of the envelope of the signal, 
where the main energy of the perturbation is located. 
The absolute value of the theoretical Transfer Function can be obtained 
from the theoretically predicted displacements (4.29) in an analogous 
manner as in the (4.39) : 
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( ) xezxSxTr ltheoretica
αωω ⋅= ,,),(      (4.40c) 

 
 
By comparing (4.40c) and (4.39) at each frequency it is possible to 
determine the attenuation coefficient α(ω) that best matches the theoretical 
and the experimental Transfer Functions. This task is accomplished by 
means of the Levenberg Marquardt non-linear inversion algorithm  (Press et 
al., 1992, Rix et al., 2001b). 
As an example we anticipate the results obtained at the site Mud A (USA), 
whose characteristics will be further explained in Chapter 5. We only say 
that it is located on an artificially made island on the Mississippi river and it 
is mainly constituted by silty sands. 
As a first step it is necessary to explain how the standard deviations that 
appear in the weighting matrix W in formula (4.34) can be calculated. 
The standard deviation σ associated to any measured data is correlated to 
the relative error ε and the averaged quantity |w| that has been measured by 
means of: 
 

|| averagedw⋅= εσ         (4.41) 
 
In this case as measured quantity |w| the vertical displacements have been 
considered. 
The relative error can be evaluated by using the coherence γ2 (see fig.4.1) 
just defined in Chapter 2 (2.?): 
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where N is the number of the averaged measurements. 
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Figure 4.1: Coherence of the experimental displacements measured at the 
receivers 1st (circles) and 15th (plus). A good quality of the measured data 
can be observed above 10 Hz, where the coherence is equal to 1. 
 
It must be underlined that it is easy to demonstrate that the coherence 
associated to the measurements is the same for both the displacements and 
the accelerations. 
The variance associated to any measured data is defined as the square of the 
standard deviation σ, so the variance for the vertical displacements is given 
by: 
 

|])([||])(var[| 2 ωσω ww =       (4.43) 
 
If the assumption is made of a Gauss distribution of the experimental 
measurements, that are assumed independent events, only two quantities are 
needed to describe the uncertainties associated to the measured data: the 
expected value waveraged and the standard deviation σ. If also the attenuation 
coefficient at each frequency is determined by means of a non-linear least-
square algorithm such as Levenberg Marquardt, then the uncertainty in 
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estimating the attenuation coefficient α can be approximately calculated 
using (Lai, 1998, Menke, 1989): 
 

( )[ ] [ ]( )[ ]TTTTT JJJwJJJ αααααα ωα 11 )(cov)var( −−≈    (4.44) 
 
in which the covariance matrix cov[|w(ω)|]=n x n is diagonal with the non-
zero elements equal to the variances of |w(ω)| given by (4.43) because of the 
hypothesis of uncorrelated measured data (Lai,1998). 
The term Jα is a n x 1 vector whose components are given by (Lai,1998): 
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==    (4.45) 

 
where k=1÷n indicates the generic receiver and n is the total number of 
receivers. 
By using (4.43) and (4.44) it is possible to calculate the terms of the 
weighting matrix W in (4.34). 
In fig.4.2 the comparison between the experimental (circles) and the 
theoretical (dots) absolute value of the vertical displacements is illustrated at 
the frequencies between 15Hz and 21.25Hz. It is interesting to notice the 
oscillating behavior of both the responses due to the superposition of all the 
Rayleigh modes. This aspect assumes relevance when dealing with 
inversely dispersive sites, especially at frequencies greater than the cut-off 
frequency of the second mode of Rayleigh. In fact below the cut-off 
frequency of the second mode of Rayleigh only the fundamental mode 
exists and the Geometrical Spreading Rayleigh function S(x,z,ω) reduces to  
a constant factor proportional to 1/√x that governs the geometrical 
attenuation law of the Rayleigh waves through a homogeneous half-space. 
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Figure 4.2: Experimental (circles) and the theoretical (dots) absolute value 
of the vertical displacements at Mud A site. 
 
The simplified attenuation law 1/√r is equivalent to using only one mode of 
Rayleigh, that is the fundamental mode (Foti, 2000, Rix et al., 2000). It has 
got some limitations in simulating the oscillating behaviour of the spatial 
wave train made of all the Rayleigh modes. In fig.4.3 the influence of 
considering the simplified geometrical attenuation law 1/√r instead of the 
Geometrical Spreading Rayleigh function S(r,z,ω), calculated using all the 
Rayleigh modes (fig.4.4), is visible in terms of the attenuation curve. It can 
be observed that, if the contribution of higher modes of Rayleigh is ignored, 
the Attenuation curve mainly decreases with frequency, instead of 
increasing, as it is expected according to the formula (4.26). In making this 
consideration we are assuming a shear damping ratio evaluated at a 
frequency of reference and it is also supposed that the influence of the phase 
velocity V(ω) consists in any oscillations of the Attenuation curve localised 
at some frequencies. 
In the Author’s opinion the significant oscillation presented by the 
Attenuation curve in fig.4.4 around the frequency of 80Hs is not correlatable 
to the Dispersion Relation, since V(ω) is almost constant at high frequencies 
(fig.5.36). A possible cause that seems reasonable is represented by the near 
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field effects that disturb the data acquired at the receivers close to the 
source, where the wave components at high frequency are mainly detected. 
In fact the higher the frequency of the wave, the higher the number of 
oscillations into a fixed space, the more rapid the attenuation with distance. 
This means that the receivers located in the far field detect high frequency 
components of motion that are more affected by noise, because their 
intensity has just been considerably attenuated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: Experimental Attenuation curve at site Mud A using a 
simplified geometrical attenuation law 1/√r. 

 
For the Attenuation curve at the site Mud A site the proper choice has been 
made of  excluding the frequencies higher than 70 Hz, to be used for the 
inversion of the final Damping ratio profile (fig.4.5). 
The obtained Damping ratio profile is reliable, since for sands, values below 
2% are expected at very small deformations and a decreasing trend is 
observed, due to the increasing stress state with depth, which causes an 
increment of the stiffness, provided the material is  the same. 
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Figure 4.4: Experimental  Attenuation curve at site Mud A when the 
Geometrical Spreading Rayleigh function S(x,z,ω) is calculated using all the 
Rayleigh modes. 

 
It can be said that the Uncoupled procedure represents a valid alternative to 
the Coupled procedure when the stiffness profile and the stratigrafy of the 
site are available and a preliminary Damping ratio profile is desired before 
proceeding with a theoretically more refined Coupled Inversion. 
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Figure 4.5: Inverted Damping ratio profile at site Mud A (USA). 
 
 
 
4.4 Coupled Inversion 
 
 
The Coupled Inversion of Dispersion and Attenuation curves is possible by 
means of the complex wave velocities as defined in (4.11) and (4.12) and 
the application of the elastic-viscoelastic correspondence principle to the 
Rayleigh eigenproblem. In fact if the complex Rayleigh wavenumbers are 
found the theoretical complex phase velocity specified in (4.24) can be 
calculated and successively compared to the experimental complex phase 
velocity. In this way a basis is available for an optimisation algorithm that 
varies the initial geometrical and mechanical parameters of the model until a 
properly built objective function is minimised. 
The main differences with respect to the Uncoupled Inversion concern the 
idea of measuring and theoretically evaluating together the Attenuation and 
Dispersion Relations. As just anticipated in section 4.3 the comparison 
between the experimental and the theoretical responses of the system is 
made by using the Displacement Transfer Function . 
In order to measure both the attenuation coefficient and the phase velocity 
of Rayleigh waves a procedure analogous to the one used for the Uncoupled 
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Inversion can be used, except that the experimental complex wave number 
is determined as it appears in (4.29), instead of the attenuation coefficient α 
only. The advantage of this technique is the consistency guaranteed by 
adopting the same array of receivers for measuring the attenuation and the 
dispersion. The regression analysis used to obtained the experimental 
apparent wave numbers is the same as in the Uncoupled procedure i.e. the 
Levenberg Marquardt algorithm with the difference that the distance 
between the theoretical and the experimental Transfer Functions must be 
defined in a complex plane. If the distance at each frequency is calculated 
as: 
 
 
 
           (4.46) 
 
then the objective function to be minimised is given by the summation of 
the square distances at all the nf frequencies of interest (Rix et al., 2001): 
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Once the experimental complex wave number k* has been found at each 
frequency it is a straightforward task to calculate the experimental 
Dispersion and Attenuation curves by means of: 
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In fact it comes out that: 
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It should be highlighted that the evaluated experimental wave number has to 
be intended as an apparent result, that is as it appears by measuring the 
travelling perturbation with an assigned configuration of receivers. The term 
apparent assumes the same meaning as it has been given in the previous 
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Chapters 2 and 3 and it refers to the interaction between the system response 
and the array of receivers. 
As an example of the Coupled determination of the experimental Dispersion 
(fig.4.6)and Attenuation (fig.4.7) relations(Rix et al., 2001), consider the 
Mud B site, that is located nearby the previously mentioned Mud A site and 
whose characteristics are described in details in the next Chapter 5. 

 
Figure 4.6: Experimental Dispersion Relation at Mud B site (USA) by 
means of the Coupled procedure of measurement. 

 
As can be seen in fig.4.7 at about 75Hz there exists a relatively great valley 
of the Attenuation curve, as already observed in fig.4.4 for site Mud A. As 
already said it is believed that this behaviour be unfaithful for the reasons 
that have already been explained above. Hence for the Coupled Inversion 
Procedure the frequencies higher than 70Hz have been excluded and the 
resulting Attenuation curve shown in fig.4.8 has been used. 
Once the experimental response of the system has been evaluated the next 
step consists of theoretically reproducing the same system response in order 
to compare them in the framework of an Inversion procedure. 
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Figure 4.7: Experimental Attenuation Relation at Mud B site (USA) by 
means of the Coupled procedure of measurement (frequencies higher than 
70 Hz included). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8: Experimental Attenuation Relation at Mud B site (USA) by 
means of the Coupled procedure of measurement: (frequencies higher than 
70 Hz excluded). 
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The strategy of the optimisation algorithm is the same as for the Uncoupled 
Inversion, that is the roughness of the stiffness and damping ratio profiles is 
minimised together with the distance between the experimental and the 
theoretical responses of the system. Of course all the elastic variables are 
substituted by the corresponding complex quantities, so that equation (4.36) 
becomes (Rix et al., 2001): 

 
(4.51) 

 
where the superindex H represents the Hermitian operator,  
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respectively) Jacobian matrix whose elements are the complex partial 
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in which V*

R is the vector of the nf theoretically predicted Rayleigh complex 
phase velocities, V*

S0 is the current configuration of the system parameters. 
Also: 
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where       is the vector of the nf experimental Rayleigh complex phase 

velocities and   is the nf x 1 vector of the theoretical Rayleigh 

complex phase velocities corresponding to the current set of parameters  

Formula (4.53) comes out from a first order approximation of the non-linear 

relationship: 
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between the complex Rayleigh phase velocity and the complex shear wave 

velocity around the current set of parameters  
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so that the optimisation algorithm belongs to a local-search technique. The 
last observation does not necessarily imply that the final inverted profiles be 
close to the starting profiles but only that the final configuration depends on 
the initial guess of the system parameters. As already explained in Chapter 3 
a local-search techniques based on gradient of the objective function 
information are likely to find a local minimum in the space of the 
independent variables, but there are no certainties whether the found 
maximum is the optimum in absolute terms. 
Actually the best strategy for the Inversion procedure would be adopting a 
global-search technique for pinpointing a limited set of possible candidates 
to be used as initial guess for a local-search technique. Successively a good 
criterion for discerning the desired optimum is taking the lowest value of the 
objective function among those given at the several local minima found by 
means of the local-search algorithm.  
Once the complex shear wave velocity profile V*

S has been inverted the 
corresponding real shear wave velocity and damping ratio profiles can be 
easily determined by means of (4.12): 
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For the above mentioned site Mud B the final shear wave (fig.4.9a) and 
damping ratio (fig.4.9b) profiles are reported below (Rix et al., 2001). 
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Figure 4.9a, b: Shear Wave Velocity and Shear Damping Ratio Profiles 
Obtained Using the CoupledInversion Algorithm at Mud B site , Memphis, 
TN (USA) 
 
As can be observed in fig.4.9a the agreement between the SASW method 
(bold line) and the seismic cone penetration test (dots) is excellent and the 
Damping ratio profile is reasonable. 
In the next Chapter 5 an interesting comparison will be shown between the 
Uncoupled and the Coupled Inversion procedures with reference to the site 
Mud B. 
In concluding this Chapter it can be said that the Coupled Inversion is more 
rigorous and formally more elegant than the Uncoupled Inversion. Also the 
Coupled procedure offers an intrinsic correlation between the real and the 
imaginary parts of the complex-valued shear wave velocity V*

S, because 
they satisfy the Riemann-Cauchy conditions, provided that the Rayleigh 
complex phase velocity V*

R(V*
S) be an analytic single-valued function in its 

complex domain. This intrinsic property constitutes an additional internal 
constraint in the Inversion procedure, which mitigates the ill-posedness of 
the Rayleigh Inverse Problem (Lai, 1998). 
Nevertheless the Uncoupled Procedure has proved to be a complementary 
technique whose results will be shown to be in very good agreement with 
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the Coupled Procedure (Chapter 5). The last consideration enables one to 
asses s that the level of deformations reached in the dynamical tests, 
performed in our work, are so small that the dissipative mechanisms of the 
material do not influence significantly the system response in terms of the 
Rayleigh Dispersion Relation. This means that the material and the 
geometrical dispersions of Rayleigh waves can approximately be considered 
as two independent phenomena and their coupling can be neglected, without 
any relevant error in the above specified level of strains. 
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Chapter 5 
 
 

Experimental Results: Real Cases 
 

Introduction 
 

In the sequel a detailed description of the equipment used for the 
experimental tests will be given and the most significant results about real 
sites will be presented and commented. 
As just anticipated in the previous Chapters the determination of the soil 
properties at a site relies on the theoretical simulation of an experiment in 
situ. As a consequence it becomes a key point having clear information 
about the experimental test and the instrumentation used for the purpose. 
First of all it is worth remembering that the basic idea for studying the 
system response consists of perturbing it on a point on the free surface and 
then of measuring the induced vibrations at a finite number of locations on 
the free surface. 
So in the following a first section will discuss the different types of sources 
that have been adopted for the experiments and another section will focus 
on the kinds of equipment used for acquiring the travelling perturbation. 
A series of real sites will follow which have been successfully inverted  by 
means of the procedures explained in the previous Chapters. 
 
5.1 Impulsive and Harmonic Point Sources 
 
In Chapter 2 we referred to both an impulsive and a harmonic vertical point 
source and two different procedures have been explained, which allow for 
the evaluation of the same system response in terms of the apparent 
geometrical dispersion curve of Rayleigh waves (see Appendix A). 
The impulsive source may be represented by either a hammer shot or a 
heavy weight left dropped from a certain height. 
The hammer has a mass of 6Kg and it is used to generate high frequency 
waves, that are useful for investigating the upper side of the site. 
As heavy weight a mass of 80÷130Kg has been dropped from a height of 
about 3m by means of the system illustrated in fig.5.1. 
The total amount of energy that is put inside the system is about: 
 

JmsmKgmghEtot 38263/81.9130 2 =⋅⋅==  
 



_______________Chapter 5: Experimental Results: Real Cases____________________ 
 

 177

and it is possible to excite low frequencies down to around 5Hz ÷10Hz to 
get information about the deeper layers of the site. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: Device for lifting the weight drop at a height of 3m. 
 
 
In case impulsive sources other than those reported above are used in the 
experiments they will be specified. 
The harmonic point source is an electro-mechanical vibratory shaker (Model 
400 Electro-SeisR Shaker by APS Dynamics, Inc.), whose picture is 
illustrated in fig.5.2. 
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Figure 5.2: Electro-mechanical vibratory shaker (Model 400 Electro-SeisR 
Shaker by APS Dynamics, Inc.) 
 
 
The maximum stroke for the oscillations of the shaker mass is 6.25 inches 
and the shaker mass of 30.6 Kg allows the generation of forces from 445 N 
to 60 N in the frequency range of 1-200 Hz. 
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The frequency input of the shaker as it has been measured by the 
accelerometer mounted on the top of the framework at Houston site (USA) 
is reported in fig.5.3. 

 
Figure 5.3: Normalized PSD of the harmonic source input at Houston. 

 
The Power Spectral Density of the acceleration has been measured on the 
top of the source by means of a source-mounted Wilcoxon Research Model 
728T High Sensitivity, Low-Noise accelerometer. 
As can observed from fig.5.3 the input given by the harmonic source is 
sufficiently the same at different frequencies. Hence with this source it is 
possible to input the same energy level at different frequencies, so that the 
site response can be investigated in the frequency range of interest. 
 
5.2 Acquisition Instrumentation 
 
The main tools needed for the experiments are: 
1) a seismograph or digital analyzer for gathering the soil response 

Frequency (Hz) 
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2) the receivers, which can be either geophones or accelerometers, 
depending whether the particle velocities or accelerations are measured. 
There have been two different series of campaigns: the first one in USA, the 
second one in Italy. In USA the experimental data have been collected by 
means of Wilcoxon Research 731A Ultra-Quiet, Ultra Low Frequency 
seismic accelerometers and a 16-channel Hewlett Packard VXI-based digital 
signal analyzer. In Italy the seismograph ABEM model Terraloc MK6 (see 
fig.5.4) and the geophones Sensor model SM-6/U-B vertical transducers 
(see fig.5.5) with a natural frequency of 4.5Hz and a damping factor of 0.6 
have been used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4: Seismograph ABEM model Terraloc MK6. 

 
 

Figure 5.5: geophones Sensor model SM-6/U-B vertical transducers. 
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5.3 Sites Investigated 
 
In the following some of the investigated real sites will be described and 
their characterization by means of the inversion procedures explained in 
the previous Chapters will be shown in terms of the thicknesses and 
either shear wave velocity or shear damping ratio. 
A summary list of the sites is reported in table 5.1. The experimental 
measurements of either the particle velocities or the particle accelerations 
at the sites: Houston Leeve Park, S16, Wolf River, Mud A, Mud B and at 
Verzuolo have been gently provided by Prof. Rix and Hebeler and Dr. 
Foti respectively. 
 

Site Country Dispersion Inversion 
Houston USA Normal Vs 

S16 USA Normal Vs 
Wolf River USA Inverse Vs 
Verzuolo Italy Inverse Vs 

Pisa Tower Italy Inverse Vs 
Mud A USA Normal Vs-Ds 
Mud B USA Normal Vs-Ds 

 
Table 5.1 : List of real sites that have been inverted. 

 
 
5.3.1  Houston Levee Park 
 
The site is located in Germantown, Tennessee (USA) not so far away 
from the Mississippi River (Hebeler, 2001).  
The experimental test has been performed, by using a vertical harmonic 
shaker, operating in the range of frequency of interest, that is between 5-
100 Hz divided into 57 points with a sampling frequency equal to 
0.6250Hz. In order to evaluate the experimental dispersion curve, the 
vertical component has been considered and the procedure explained in 
Chapter 2 has been followed, so the experimental data are shown in fig. 
5.6. It can be seen that the behavior of the experimental phase velocity is 
quite smooth and resembles the typical tendency of normally dispersive 
sites, in which the stiffness increases with depth. For the inversion 
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procedure, not all the calculated points of the experimental curve have 
been used, but only 15 frequencies have been selected. 

 
Figure  5.6: Experimental dispersion curve in Houston (USA) 

 
This operation does not influence so much the accuracy of the inversion 
process, since it has been proved (Yuan and Nazarian, 1993) that, 
increasing the number of points beyond approximately (0.5 - 1.0)⋅D, 
where D is the number of the unknowns, only increases the 
computational cost of the inversion, without adding information to the 
dispersive characteristic of the medium.    
For the inversion process the thicknesses were kept constant and the 
shear wave velocities were used as decision variables of the optimization. 
Also the mass density ρ and the P-wave velocities were fixed, since 
previous studies have demonstrated that these parameters influence the 
phase velocity less than 5% (Nazarian, 1984). For the P-wave velocities 
in the unsaturated layers a value equal to 1.5 times the S-wave velocities 
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has been assumed, that means a constant Poisson ratio of about 0.2. The 
following table summarizes the assumed parameters for the starting guess 
X01 for the optimization routine. 
 

Layer H Vs νννν ρρρρ 
 (m) (m/s) Poisson (kg/m3) 

1 2 140 0.2 1900 
2 2 200 0.48 1900 
3 2 210 0.48 1900 
4 2 280 0.48 1900 
5 3 300 0.48 1900 
6 3 325 0.48 1900 
7 3 330 0.48 1900 

Half-space ∞ 365 0.48 1900 
 

Table 5.2: Initial configuration X01 for the Inversion. 
 
After 25 iterations the final profile, that corresponds to the “optimal” 
solution is reported in the table 5.3. 
 

Layer h Vs Vp ρρρρ 
 (m) (m/s) (m/s) (kg/m3) 

1 2 152 280 1900 
2 2 226 400 1900 
3 2 233 420 1900 
4 2 288 560 1900 
5 3 300 600 1900 
6 3 320 650 1900 
7 3 325 660 1900 

Half-space ∞ 353 730 1900 
 

Table 5.3: Final configuration after the Inversion. 
 

In fig. 5.7 both the experimental, the starting guess X01 and the “optimal” 
dispersion curves are illustrated. As it is evident, the starting guess is 
good enough, in fact the general trend of the experimental curve is quite 
similar. It must be observed that the final solution matches almost 
perfectly the experimental data. 
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In fig.5.8 it is also possible to visualize the variation of the objective 
function during the several iterations. As a confirmation of the fast 
convergence of the algorithm, just after the first 5 iterations the objective 
function decreases from about 4800 to 210, decreasing only to 137.6 in 
the successive 20 iterations. 
Below are tabled the values of the objective function P and its gradient N 
for all the 8 variables for the initial guess X01 and for the last iterations. 
 

Variables N(initial guess) N(optimum) 
1 -405 0 
2 -122 0 
3 -54.9 -1.0 
4 -13.9 -0.7 
5 -8.6 0 
6 -3.4 0 
7 -1.7 0.03 
8 -3.8 -0.3 

Objective function 
value 

4.80E+03 137.6 

 
Table 5.4: Gradient of the Objective Function for the initial and the 
inverted configurations. 
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Figure 5.7: Experimental, initial guess X01 and “optimal” inverted 
dispersion curves . 
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Figure 5.8: Reduction of the Objective Function with the number of 
iterations for initial guess X01. 
 
The low values of the components of the gradient represent a necessary 
condition for the optimality and, considering the decreasing trend, it can 
be said that the final configuration is not a maximum. In order to check if 
the final solution is a minimum rather than a saddle point, another initial 
guess has been considered, characterized this time by a dispersion curve 
above the experimental data, as visible in fig.5.9. 
In the fig.5.9 the final iteration for the different initial guess X02 is also 
shown. Below in table 5.5 analogous considerations about the gradient of 
the objective function have been made as for the previous guess. 
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Figure 5.9: Experimental, initial guess X02 and “optimal” inverted 
dispersion curves . 
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Variables N(initial guess) N(optimum) 

1 261 4.6 
2 101 -1.5 
3 45 -1.5 
4 24.9 -1.0 
5 19.8 -0.4 
6 10.3 0.07 
7 5.7 0.05 
8 17.6 -2.0 

Objective function value 3.1152e+003 101.8 
 
Table 5.5: Gradient of the Objective Function for the initial and the inverted 

      configurations. 
 
In this second case the inversion process ended after 17 iterations and the 
trend of the objective functions is compared in the fig. 5.10 . 
The following three considerations sum it all up: 
1)  the two objective functions converge to about the same value and they 
also present the same tendency, in fact they both decrease in the first 5 
iterations  
2) the convergence to the experimental curve has been obtained starting 
with both a curve above and below it and 
3)  it is reasonable to think of the found solution as a global optimum. 
 
It is also interesting to observe in figures 5.11 and 5.12,  the reduction of 
the relative error between the initial (stars) and the final curves (crosses)  
with respect to the experimental curve at all the frequencies for both 
cases X01 and X02.  
Even with this second starting configuration the variation of the 
velocities between the guess and the final solution is not relevant (see 
table 5.6) 
Eventually we can say that the final configurations starting with two 
distinct initial guesses are very close to each other and the greatest 
differences concern the S-wave velocities of the intermediate layers. 
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Figure 5.10: Comparison between objective functions for two different 
starting  points X01 and X02 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Relative distance between experimental and theoretical 
system responses at different frequencies for the initial (X01) and inverted  
configurations. 
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Figure 5.12: Relative distance between experimental and theoretical 
system responses at different frequencies for the initial (X02) and inverted  
configurations. 

 
Layer Vs (m/s) Vs (m/s) Vs (m/s) Vs (m/s) Vs (m/s) 

 Initial(X01) Final(X01) Initial(X02) Final(X02) Averaged 
1 140 152 160 153 153 
2 200 226 230 214 220 
3 210 233 280 252 243 
4 280 288 305 284 286 
5 300 300 325 289 293 
6 325 320 335 311 316 
7 330 325 340 329 327 
∞ 365 353 345 357 355 

 
 
Table 5.6: Comparison between the inverted profiles at Houston Leeve 
Park starting from two different initial configurations. 
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Figure 5.13: Comparison among the initial guess X01, the final and the  
   complete experimental dispersion curves. 
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This enables us to conclude that the apparent phase velocity is mostly 
influenced by the velocities of the layers that are located at great depth or 
at the surface of the half-space, whereas it is less sensitive to the 
variation of the velocities of the intermediate layers. 
In fig. 5.14 how good the match of the complete experimental data is, 
even using a reduced number of points for the inversion process. 
Finally we can show in fig.5.15 a comparison between the results 
obtained herein and those by Hebeler (Hebeler, 2001), who used the 
same experimental data, but a different inversion algorithm (Rix and Lai, 
1998). 
It can be observed that, beside some little discordance for the 
intermediate layers, the agreement is excellent and the two profiles 
present the same trend. 
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Figure 5.14: Comparison among the initial guess X01, the final and the 
complete experimental dispersion curves. 
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Figure 5.15: Comparison of the results with the analysis by Hebeler 
(Hebeler, 2001). 
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5.3.2  Street 16  
 
This site, called S16, is located within the Shelby County, Tennessee, near 
the Memphis metropolitan area, where Dr. Ron Street of the University of 
Kentucky has investigated several other sites by seismic refraction methods 
(Street, 1999). 
The experimental testing parameters  consist of an array geometry of 16 
accelerometers (zero means that the first accelerometer is mounted on the 
top of the source), given by the following positions vector expressed in 
meters: 
 
x=[ 0    2.6667    3.3333    4.0000    5.0000    6.0000    7.3333    9.3333   
11.3333   14.0000   16.6667   20.0000   23.3333   26.6667  31.6667   
36.6667]. 
 
The frequency range is between 3.75 Hz and 100 Hz, with a varying spacing 
of ∆f = 0.625 between 3.75 Hz –15 Hz , ∆f = 1.25 Hz between 16.25Hz and 
355 Hz and ∆f = 2.5 Hz between  37.5 Hz and 100 Hz. The experimental 
dispersion curve (see fig.5.16) for Rayleigh waves has been gently provided 
by Prof. Rix and Hebeler (Hebeler, 2001) and it has been calculated by 
means of the procedure explained in Chapter 2 for harmonic source. 
In fig.5.16 the dots represent the complete experimental dispersion curve, 
instead the circles  represent the experimental points properly chosen for the 
inversion process. As can be observed, the data above 90 Hz have been 
discarded, since they have been judged not reliable and they do not add any 
important information about the stratigraphy. 
The starting configuration for the shear wave velocities has been chosen by 
considering the trend of the experimental dispersion curve. In fact it makes 
someone think of a normally dispersive site, because the experimental phase 
velocity never increases considerably with frequency. 
In table 5.5 both the initial and the finally inverted shear wave velocity 
profiles are reported (see fig.5.17) (Roma et al., 2002). After 11 iterations 
the objective function has decreased from 7000 to 800, proving the 
successful inversion (see fig.5.18). 
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Figure 5.16: Experimental dispersion curve for Rayleigh waves at S16 site. 
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Layer ρρρρ(Kg/m3) h (m) νννν Vs (m/s) Vs (m/s) Gs (MPa) 

   Poisson Initial Final Final 
1 1900 3.5 0.2 180 188 67 
2 1900 3 0.48 200 244 113 
3 1900 5 0.48 250 279 148 
4 1900 3.5 0.48 300 279 148 
5 1900 5.5 0.48 400 377 270 
6 1900 9.5 0.48 500 482 441 
7 1900 7.7 0.48 600 596 675 

Half-space 1900 ∞ 0.48 800 796 1204 
 

Table 5.5: Results of the Inversion process at S16 site (USA). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.17: Experimental dispersion curve (green bold line), starting (red 
stars) and final (blue crosses)   theoretical dispersion curves at S16 site. 
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Figure 5.18: Objective Function reduction during the Inversion  
process at S16 site. 
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For this site alternative investigations and analyses are available. Precisely 
in fig.5.19 the interpretations of the seismic refraction results (blue line with 
triangles) by Prof. Street (Street, 1999) and the inversion of Multichannel 
SASW (black line with rhombus) by Hebeler (Hebeler, 2001) are plotted 
together with the final profile, obtained by the author. It should be 
underlined that the identifications of the sites by Hebeler, 
based on Multichannel SASW, are performed by means of a inversion 
algorithm, which is different from that one used in this thesis. The following 
fundamental differences in the procedures exist: 

1) The algorithm used by Hebeler (Lai and Rix, 1998) makes use of the 
effective phase velocity concept as system response. The effective phase 
velocity depends on distance from the source and a spatially averaged value 
is assumed for the system response. Instead the inversion procedure used in 
this thesis uses the apparent phase velocity, which is the result of a 1D 
Fourier transformation of the wave field from the frequency-space domain 
to the frequency-wave number domain. 

2) The algorithm used by Hebeler (Lai and Rix, 1998) states the inversion 
problem differently from the algorithm presented in this thesis. The two 
non-linear constrained optimization problems are mathematically different, 
as well as the optimization algorithms, that are used for solving the 
mathematical inverse problem. In this thesis the penalty method associated 
with the Davidon-Fletchell-Powell method is used. In the algorithm used by 
Hebeler is based on a paper by (Constable et al 1987). 
From the fig.5.19 a perfect agreement among the several results can be 
noticed down to a depth of about 8m. Below the depth of 8m the seismic 
refraction results differs from the profiles obtained by Hebeler and the 
author. 
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Figure 5.19: Comparison among different analyses and investigations at 
S16 site. 
 

SASW by Hebeler 

SASW by Roma 

Seismic Refraction 
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5.3.3  Wolf River 
 

The Wolf River site is located near the Shelby Farms park,  approximately 
30 m north from the Wolf River. The frequency subintervals for the 
experiment are the same adopted at S16 site and so is the configuration of 
the receivers. The experimental dispersion curve (dots) shows an inversely 
dispersive trend, as it can be observed in fig.5.20, where the theoretical 
dispersion curve (circles) corresponding to the last iteration is also 
illustrated. The table 5.6 and fig. 5.21 and fig.5.22 summarize the results of 
the inversion process: 
 

Layer ρρρρ(Kg/m3) h (m) νννν Vs (m/s) Vs (m/s) Gs (MPa) 
   Poisson Initial Final Final 

1 1900 3.5 0.2 180 188 67 
2 1900 3 0.48 200 244 113 
3 1900 5 0.48 250 279 148 
4 1900 3.5 0.48 300 279 148 
5 1900 5.5 0.48 400 377 270 
6 1900 9.5 0.48 500 482 441 
7 1900 7.7 0.48 600 596 675 

Half-space 1900 ∞ 0.48 800 796 1204 
 

Table 5.6: Results of the Inversion process at Wolf River site (USA). 
 
In fig.5.22 the results of the Seismic Cone Penetration Test (CPTU) 
(Schneider, 1999) are plotted together with the profile identified by means 
of the algorithm, which has been developed in this thesis. The two profiles 
show a good agreement, especially in the upper side of the ground. 
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Figure 5.20: Experimental and theoretical responses at Wolf River site  
        (USA). 



___________________Chapter 5: Experimental Results: Real Cases________________ 

 203

 

 

Figure 5.21: Inverted shear Modulus profile at Wolf River site (USA). 
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Figure 5.22: Inverted shear wave velocity profile at Wolf River site (USA). 
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Since this site is inversely dispersive it is interesting to make some 
considerations about the relative importance of the Rayleigh modes. 
In fig.5.23 the experimental and theoretical dispersion curves are 
represented in the f-k domain. As it can be revealed by fig.5.24 the global 
response of the system (either experimental or theoretical) coincides with 
the fundamental Rayleigh mode up to a frequency of about 55 Hz (or 
equivalently until a wave number of about 2.4 rad/m) and then transits 
towards the 2nd mode of Rayleigh. The same observation can be made 
looking at the Rayleigh Dispersion Relation in terms of phase velocity in 
fig.5.25 on the frequency  axe and in fig.5.26 on the wave number axe. 
As it has been explained in Chapter 2 a very clear way for understanding the 
transition of predominance from the fundamental mode towards the higher 
modes of Rayleigh is given by the normalized spectra of  the modal energy 
or displacements (see fig.5.27 and fig.5.28).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



___________________Chapter 5: Experimental Results: Real Cases________________ 

 206

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.23: Experimental (dots) and theoretical (circles) responses  
 at Wolf River site. 
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Figure 5.24: Experimental dispersion curve (dots) and theoretical  Rayleigh 
modes at Wolf River site. 
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Figure 5.25: Global response (circles) and theoretical Rayleigh modes at 
Wolf River site. 
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Figure 5.26: Global response (circles) and theoretical Rayleigh modes at 
Wolf River site. 
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Figure 5.27: Relative importance of Rayleigh modes as a function of  the 
frequency of excitation. 
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Figure 5.28: Relative importance of Rayleigh modes as a function of  the 
wave number of excitation. 
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5.3.4  Verzuolo 
 
Verzuolo (CN, Italy) site is located in the north-west of Italy and the 
geotechnical characterization serves the planning and the construction of a 
cogeneration plant, acting in combined cycle of approximately 120 MW for 
the production of electrical energy and steam. The plant, constructed by Fiat 
Engineering SPA, in association with General Electric-Nuovo Pignone on 
the premises of the Burgo paper-mill, consists of two General Electric MS 
6001 B turbines, a Nuovo Pignone EHNK 50/90 steam turbine and two 
steam generators operating on two levels of pressure.  
 Specifically the Author has worked on the dynamic design of the 
foundations of the thermo-electric power plant, during the 2000 for 
Ingegneria Geotecnica firm in Turin (Italy). 
 

Layer ρρρρ(Kg/m3) h (m) νννν Vs (m/s) Vs (m/s) Gs (MPa) 
   Poisson Initial Final Final 

1 1900 3.5 0.2 180 188 67 
2 1900 3 0.48 200 244 113 
3 1900 5 0.48 250 279 148 
4 1900 3.5 0.48 300 279 148 
5 1900 5.5 0.48 400 377 270 
6 1900 9.5 0.48 500 482 441 
7 1900 7.7 0.48 600 596 675 

Half-space 1900 ∞ 0.48 800 796 1204 
 

Table 5.6: Results of the Inversion process at Verzuolo site (Italy). 
 
For this site the impulsive source illustrated in fig.5.1 has been adopted and 
the seismograph ABEM Terraloc MK6 with 24 vertical geophones 
SENSOR model SM-6/U-B (natural frequency 4.5 Hz) already described in 
the previous sections of this Chapter. As a consequence the experimental 
dispersion curve in fig.5.29 has been calculated by means of the spectrum of 
the measured velocities as has been explained in Chapter 2. 
The experimental dispersion curve and the theoretical simulation at the last 
iteration are reported in fig.5.30, whereas the inverted profile is described in 
table 5.6 above and graphically represented in fig. 5.33. 
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Figure 5.29: Experimental dispersion curve at Verzuolo site (Italy). 
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Figure 5.30: Inversion results at Verzuolo site (Italy): experimental 
(crosses) and theoretical (circles) system responses.  
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Figure 5.31: Rayleigh modes (solid lines) and theoretical apparent   
dispersion curve (circles) at Verzuolo site (Italy). 
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Figure 5.32: Spectrum of displacements theoretically simulated with  the 
inverted profile at Verzuolo site (Italy). 
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Figure 5.33: Inverted profile at Verzuolo site (Italy) with prediction of the 
water table position. 
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In fig.5.33 the results of a drilling survey with in situ Standard Penetration 
Tests (SPT) have been reported on the left side of the inverted shear wave 
velocity profile. Precisely 8 drillings have been performed down to a 
maximum depth of 30m and the averaged geotechnical characterization is 
summarized in the same fig.5.33. 
As can be observed the water table position has been  represented in the 
same fig. 5.33. In this site the water table position was not known a priori, 
so several positions for the water table have been tried until a satisfactory 
agreement has been achieved between the experimental and the theoretical 
dispersion curves. It should be said that in normally dispersive systems 
Nazarian et al. (1984) have shown how the influence of the Poisson ratio is 
less than 5% on the dispersion curve. From the several theoretical 
simulations performed at Verzuolo it has been observed that the optimal 
minimum of the objective function can be reached only if the water table 
depth is around 5m. By positioning the water table at different depths, the 
global system response in terms of dispersion curve completely coincides 
with the fundamental mode of Rayleigh at all the frequencies. Instead, if the 
water table depth is set at z=5m, at a frequency of about 20Hz the 
predominance passes from the first mode to the second mode and then the 
fundamental mode becomes again the most important (see fig.5.31). This 
kind of behavior can again be clearly observed looking at the modal spectra 
of the displacements in fig.5.32. From the same fig.5.32 other precious 
information are available for a dynamical soil-structure interaction and 
vibrations transmitted to other surroundings around the turbo-gas machine. 
In fact the frequency of resonance of the site at f=40Hz can be recognized 
for the fundamental mode of Rayleigh. This frequency is distant enough 
from the two frequencies of excitation at which the superstructure works, 
i.e. 50Hz and 86Hz, so that the induced vibrations on the surface are below 
the prescribed targets. In a very simplified analysis the layered half-space 
can be assumed to be a semi-infinite half-space with the following 
characteristics: 
 

νννν ρρρρ 
(Kg/m3) 

GS (Mpa) DS (%) 

0.35 1900 600 <5% 
 
Table 5.7: Characteristics of the equivalent Half-space used in the 
simplified analysis for a preliminary design of the base foundation of the 
vibrating machine. 
 
 The choice of a Poisson ratio ν=0.35 is justified by the need of averaging  
the values ν=0.2 and ν=0.45 corresponding to the unsaturated and saturated 
layers. 
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The geometrical characteristics of the rectangular foundation are reported in 
table 5.8 below, instead the external forces acting on the mass centroid of 
the base foundation are summarized in table 5.9. 
 

Base Foundation                
Width (m)                              B=4 
Length (m)                           L=21.7 
Height (m)                   H=1.8 
Depth of the base (m)                h=1.8 
Total mass (Kg)                      M=66900 
Centroid  from  the top of the    
foundation (m)                 

ZG=0.243 

 
Table 5.8: Geometrical Characteristics of the base foundation. 

 
External Loads on the Base 
Foundation respect to the centroid 

               

Horizontal Forces (KN) 450 
Vertical Forces (KN) 886 
Bending Moment (KN⋅⋅⋅⋅m) 109.5 

 
Table 5.9: Resulting external loads on the Base Foundation for the 
preliminary design. 
 
From the above data about the soil (predominantly gravel), the base 
foundation and the external loads, the natural frequencies of the system 
made of base foundation and superstructure have been calculated by means 
of the formulas suggested by Prakash and Puri (1988). It comes out that the 
natural vertical and horizontal frequencies are about fvertical=19Hz and 
fhorizontal=31.8Hz respectively and the maximum displacement corresponds to 
the vertical displacement equal to 4⋅10-5m as can be seen in fig.5.34, where 
the amplitude of the vertical displacement has been plotted as a function of 
the circular frequency of excitation. In fig. 5.35 and fig. 5.35 similar plots 
for the amplitudes of the horizontal and rotational displacements are 
reported as a function of the circular frequency of excitation. Of course a 
deeper analysis is needed for a rigorous evaluation of the vibrations induced 
on the surroundings, i.e. buildings, other operating machines, that takes into 
account the layered nature of the site and the higher degrees of freedom of 
the machine. 
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Figure 5.34: Vertical amplitude of the base foundation for a harmonic 
vertical source of constant intensity equal to 886kN at Verzuolo site (Italy). 
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Figure 5.35: Horizontal amplitude of the base foundation for both a 
harmonic horizontal source of constant intensity equal to 450 kN and a 
harmonic bending moment of constant intensity equal to 109.5 kNm at 
Verzuolo site (Italy). 
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Figure 5.36: Rotational amplitude of the base foundation for both a  
harmonic horizontal source of constant intensity equal to 450 kN and a 
harmonic bending moment of constant intensity equal to 109.5 kNm at 
Verzuolo site (Italy). 
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5.3.5  The Tower of Pisa 
 
In the summer of 2001 an experimental campaign of investigations was 
conducted in Pisa around the Leaning Tower with the double aim of 
checking innovative techniques such as SASW in a well known site on one 
hand and on the other hand for getting additional information on the Square 
of Miracles (see fig.5.37). 

 
Figure 5.37: Square of Miracles and location of the array of receivers for 
Multichannel SASW at Tower of Pisa site. 
 
The array of the 24 geophones was set about 40m away from the Tower in 
the direction opposite to the side the Tower is inclined. Precisely on a grass 
field near the statue of the female wolf as illustrated in fig.5.37 and fig.5.38. 
The configuration of receivers used at the Tower of Pisa site consists of 24 
geophones placed 1.5m from each other from the 1st receiver to the 8th 
receiver and 3.0m from the 8th receiver to the 24th receiver, covering a total 
extension of 58.5m. The source was 1.5m distant from the 1st receiver. As 
already anticipated in Chapter 2 by using the harmonic source it has been 
possible to obtain an experimental dispersion curve even at low frequencies. 
In fig.5.39 both the experimental and the theoretically inverted dispersion 
curves are shown. 

female wolf receivers array 
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Figure 5.38: Square of Miracles and location of the array of receivers at the 
Tower of Pisa site. 

Figure 5.39: Experimental and theoretical (last iteration) dispersion curves 
at the Tower of Pisa site. 
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As can be recognized the agreement between the experimental and the 
theoretical system responses is excellent and the inverted shear wave 
velocity profile together with the other soil properties are summarized in 
table 5.10. 
 

Layer ρρρρ(Kg/m3) h (m) νννν Vs (m/s) Gs (MPa) 
   Poisson Final Final 
1 1800 1.5 0.2 190.0 65.0 
2 1800 1.5 0.2 170.0 52.0 
3 1800 3.0 0.48 175.0 55.1 
4 1800 2.5 0.48 150.0 40.5 
5 1800 3.0 0.48 140.0 35.3 
6 1800 5.0 0.48 200.0 72.0 
7 1800 5.0 0.48 250.0 112.5 

Half-space 1800 ∞ 0.48 300.0 162.0 
 

Table 5.10: Results of the Inversion process at Pisa Tower (Italy). 
 
The graphical representation of the inverted shear wave velocity profile is 
reported in fig.5.40, together with the vertically polarized shear wave 
velovity profile from Cross Hole (CH) test (Lo presti et al, 2002). A good 
agreement can be observed between the results from CH and the 
Multichannel SASW method based on Rayleigh waves. Except from the  
upper 3m of the profile the trend is the same. One possible reason for which 
the shear wave velocities from CH test and from Multichannel SASW are 
different in the upper 3m could be the fact that they have not been 
performed exactly on the same location (see fig.5.38) and the upper layers 
are represented by man made ground, characterized by horizontally spatial 
mechanical variability. On the left side of the fig. 5.40 a simplified 
description of the stratigraphy is illustrated (Lo Presti et al., 2002). 
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Figure 5.40: Inverted shear wave velocity profile at the Tower of Pisa site: 
Multichannel SASW (Roma, 2001) versus Cross Hole (ISMES Spa). 
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5.3.6  Mud A and Mud B 
 
These two sites are on an artificial island of the Mississippi River in 
Memphis (USA, Tennesee) mainly made of loose sedimentary layers of 
sand and silt. For these sites 16 accelerometers, covering a total length of 
about 34m, and the harmonic source have been used in a range of frequency 
between 3.75-hz and 100Hz. The experimental dispersion curve (circles) 
together with the theoretical Rayleigh modes corresponding to the finally 
inverted profile are represented in fig.5.41 for Mud A. As can been observed 
the experimental global response of the system coincides with the 
fundamental mode of Rayleigh as usually happens when dealing with 
essentially normally dispersive site. In fact the finally inverted profile is 
tabled in table 5.11. 
 

Layer ρρρρ(Kg/m3) h (m) νννν Vs (m/s) Gs (MPa) 
   Poisson Final Final 
1 1800 1 0.2 146 38 
2 1800 1.0 0.2 154 42 
3 1800 1 0.2 162 47 
4 1800 0.8 0.2 165 49 
5 1800 1 0.2 175 55 
6 1800 1.0 0.48 145 37 
7 1800 1 0.48 160 46 
8 1800 2.0 0.48 165 49 
9 1800 3.2 0.48 161 46 
10 1800 2.0 0.48 175 55 
11 1800 3 0.48 182 59 
12 1800 3 0.48 198 70 
13 1800 4 0.48 225 91 
14 1800 4.0 0.48 250 112 

Half-space 1800 ∞ 0.48 390 273 
 

Table 5.11: Results of the Inversion process at Mud A (USA). 
 
In fig.5.42 and fig.5.43 the shear wave velocity and the shear tangential 
modulus at very small deformations for Mud A site are plotted. 
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Figure 5.41: Experimental dispersion curve (circles ) and theoretical 
Rayleigh modes at Mud A site. 
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Figure 5.42: Inverted shear wave velocity profile at Mud A site. 

 Figure 5.43: Inverted shear Modulus profile at Mud A site. 
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For completeness the shear damping ratio profile already shown in Chapter 
4 in fig.4.5 is here reported in fig.5.44. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.44: Inverted Damping Ratio profile at site Mud A (USA). 
 
For Mud B site fig.5.45 illustrates the experimental dispersion curve (circles) 
and the theoretical Rayleigh modes obtained with the finally inverted profile 
(see table 5.12). As for Mud A the experimental dispersion curve coincides 
with the fundamental mode of Rayleigh, in fact the site is essentially normally 
dispersive. 
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Figure 5.45: Experimental dispersion curve (circles ) and theoretical 
Rayleigh modes at Mud B site. 
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Layer ρρρρ(Kg/m3) h (m) νννν Vs (m/s) Gs (MPa) 
   Poisson Final Final 

1 1800 1.5 0.2 195 68 
2 1800 1.5 0.2 180 58 
3 1800 2.5 0.2 170 52 
4 1800 2.5 0.2 170 52 
5 1800 5 0.48 165 49 
6 1800 6 0.48 190 64 
7 1800 7 0.48 280 141 
8 1800 10.0 0.48 225 91 

Half-space 1800 ∞ 0.48 665 796 
 

Table 5.12: Results of the Inversion process at Mud B (USA). 
 
For Mud B site an interesting comparison between the uncoupled and the 
coupled procedure will follow. In Chapter 4 the results of the coupled 
procedure have been shown, now the results of the uncoupled inversion will 
be commented. 
By means of the inverted shear wave velocity profile the theoretically 
simulated and the experimental vertical displacements have been compared 
(see for example fig.5.46) at several frequencies in order to evaluate the 
attenuation curve in fig.5.47. 
By comparing the experimental attenuation curves (see fig.5.48) obtained 
with the Coupled and the Uncoupled procedures at least two aspects are 
visible. The first one is that the attenuation curve obtained with the 
uncoupled procedure (red points) is always below the attenuation curve 
obtained with the coupled procedure (blue points), even if the order of 
magnitude is the same. The second feature is that the coupled inversion 
allows for a more extended attenuation curve towards the low frequencies. 
In this regard the coupled procedure should be preferred to the uncoupled 
inversion. 
The final inverted shear damping ratio profile at Mud B site following the 
uncoupled procedure is represented in fig.5.49.  
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Figure 5.46: Experimental  (circles ) and theoretical displacements at Mud 
B site. Amplitude in [m]. 
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Figure 5.47: Experimental  attenuation curve at Mud B site following the 
uncoupled inversion. 
 
A comparison between the coupled and the uncoupled procedure says that 
the results are of the same order of magnitude and in very good agreement 
but there are still some differences for some layers as is summarized in table 
5.13. 
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Layer h (m) Ds (%) Ds (%) 

  Coupled Uncoupled 
1 1.5 3 1.5 
2 1.5 2.2 1.3 
3 2.5 1.4 1.4 
4 2.5 2.8 1.8 
5 5 3.3 3.3 
6 6 3.8 3.5 
7 7 3.9 3.5 
8 10.0 4 3.5 

Half-space ∞ 4 3.5 
 
Table 5.13: Coupled versus uncoupled inversions for determining the shear 
damping ratio profile at Mud B. 
 
 

 
Figure 5.48: Experimental  attenuation curves at Mud B site following the 
uncoupled (red points below) and the coupled (blue points up) inversions. 
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Since the experimental attenuation curves obtained by means of the coupled 
and the uncoupled procedures shows quite different magnitude a hybrid 
approach has been followed between the coupled and the uncoupled 
procedures. The experimental attenuation curve from the coupled regression 
analysis of the experimental measurements has been combined with the 
shear wave velocity profile obtained with the uncoupled inversion and the 
uncoupled procedure has been performed using these two independent data. 
The final shear damping ratio profile is tabled in table 5.14 together with the 
pure coupled and the pure uncoupled procedures. The results are not so 
distant from the previous ones and they appear to follow the same trend. 
Also the order of magnitude is the same. Finally the experimental and the 
theoretical attenuation curves are compared in fig.5.50 and the agreement is 
really satisfactory. 
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Figure 5.49: Shear damping ratio profile at Mud B site following the 
uncoupled procedure. 
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Layer h (m) Ds (%) Ds (%) Ds (%) 

  Coupled Hybrid Uncoupled 
1 1.5 3 3.4 1.5 
2 1.5 2.2 3 1.3 
3 2.5 1.4 2.5 1.4 
4 2.5 2.8 3.8 1.8 
5 5 3.3 3.8 3.3 
6 6 3.8 3.8 3.5 
7 7 3.9 3.8 3.5 
8 10.0 4 3.8 3.5 

Half-space ∞ 4 3.8 3.5 
 
Table 5.14: Coupled, uncoupled and hybrid approaches for determining the 
shear damping ratio profile at Mud B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.50: Experimental (Coupled regression) and theoretical (Uncoupled 
inversion) attenuation curves in the Hybrid approach at Mud B site. 
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alternative to the coupled procedure which in principle is more rigorous, but 
at the same time more expensive in terms of computational efforts and time. 
In the opinion of the Author further investigations are necessary for 
supporting the inversion procedures proposed hereafter and improvements 
and new ideas are  to be hoped for, to determine the shear damping ratio 
profile via the SASW technique. 
 
5.3.7  Final Considerations on the Experimental Investigations 
 
From all the real sites that have been investigated some aspects can be 
underlined. First of all it has been proved that the uncoupled inversion 
technique for the shear wave velocity and thickness profiles, that relies on 
the DFP optimization algorithm, gives excellent results and very few doubts 
are left on the determination of the stiffness profile. 
Secondly the main role assumed by the experimental data must be stressed. 
In fact a reliable and accurate experimental system response is the 
fundamental basis for a correct soil characterization. This is true especially 
in non-invasive surface waves analysis for ill-posed inverse problems such 
as the Rayleigh Inversion problem. 
The damping ratio determination needs further investigations and efforts, 
even if the results achieved hereafter are definitely encouraging. In this 
regard it has been shown how important it is to consider the higher modes of 
Rayleigh in the evaluation of the experimental attenuation curve. In fact a 
simplified attenuation law such as 1/√r is commonly adopted (Foti, 2000), 
but it causes unsatisfactory results, when dealing with inversely dispersive 
systems (see fig.4.3 and fig.4.4). 
 



___________________Conclusions and Recommendations__________________ 
 

 239

Conclusions and Recommendations 
 
The use of surface waves for soil characterization represents at the 
same time a challenging and an attractive tool. This research has had 
as main goal the development of a pragmatic means for determining 
the shear wave velocity Vs, the shear damping ratio Ds and the 
thickness h profiles. 
The work has been aimed at understanding in which manner the 
higher Rayleigh modes superimpose during propagation and how they 
can be used for soil characterization. The attention is especially 
towards inversely dispersive media, in which the stiffness profile does 
not gradually increase with depth, but softer layers are trapped 
between stiffer ones or vice versa stiffer layers are between softer 
ones. 
On one side it has been clarified how the higher modes combine 
together in different zones of the frequency-wave number (f-k) 
spectrum, to give a unique apparent dispersion curve, as found in 
experimental tests. On the other hand the importance of the 
configuration of receivers in both experiments and theoretical 
simulations has been stressed. As a consequence the dispersion curve 
obtained from the field test and the one obtained from simulation must 
be considered “apparent” responses of the system coupled with the 
receivers array. In fact the “apparent” dispersion curve of Rayleigh 
waves is the result of what can be either measured or simulated by 
adopting that particular configuration of receivers rather than another 
one. Hence the need for using the same configuration of receivers in 
the experiments and in the theoretical simulations assumes 
fundamental relevance. 
It has been observed that the spectrum of the vertical displacements of 
each Rayleigh mode, when represented in the f-k domain  
independently from the other modes, shows at least one main peak for 
which the system response is maximized. It is worthy to note that the 
position of these modal peaks in the f-k domain individuates the 
frequencies and the wave numbers of resonance of the system for 
travelling Rayleigh waves and it has also been shown that they do not 
depend on the receivers array. This means that they represent an 
intrinsic characteristic of the system itself. 
Specifically for a single layer over an infinite half-space a sensitivity 
analysis has allowed for a simple formula to be established among the 
frequencies of resonance of the system for Rayleigh waves and the 
geometrical and mechanical properties of the system. The utility of 
such a formula comes out in all those engineering applications when 



___________________Conclusions and Recommendations__________________ 
 

 240

surface vibrations generated by Rayleigh waves are concerned (for 
example see Verzuolo site in Chapter 5). In fact in a mono-
dimensional simplified model it is commonly assumed that vertically 
travelling shear waves are responsible for vibrations induced by 
earthquakes, but daily experience makes us aware that thousands of 
kilometers away from the epicenter the main damages are caused by 
Rayleigh waves in conjunction with local site amplification effects.  
Once the relative importance of Rayleigh modes has been 
comprehended, a convenient procedure has been proposed for taking 
into account all the Rayleigh modes in the theoretical simulation of 
the experimental test. The procedure is based on three main points: 
1) an analytic expression for the far field response due to only 
Rayleigh waves is used. 
2) The experimental test is theoretically simulated except that only 1D 
Fourier transformation from frequency-space to frequency-wave 
number is applied instead of a 2D Fourier transformation from time-
space to frequency-wave number domain. 
3) If a vertical point source is used on the free surface of the layered 
half-space either the experimental or the theoretical dispersion curve 
does not depend on the energy content of the source. The energy 
content of the source allows for the dispersion curve to be evidenced 
into a certain range of frequency rather than another interval. 
Point 3) is an important result that has been theoretically demonstrated 
and experimentally verified. Thanks to this achievement the procedure 
mentioned in point 2) has been implemented with a lot of time saving. 
After a theoretical method, coherent with the experiment in situ has 
been assured, the next step consists of the inversion process. 
In this thesis both the uncoupled and the coupled techniques have 
been adopted for determining the stiffness and the damping ratio 
profiles at a site. Particularly for the uncoupled evaluation of the 
stiffness profile a quasi-Newton constrained optimization algorithm 
(DFP) has been implemented. At first both the thickness and the shear 
wave velocities have been considered as independent variables in the 
uncoupled inversion process, but it has been discovered that the 
contemporary inversion of the thickness and the shear wave velocities 
may give unrealistic results. Instead the independent inversion of 
either the shear wave velocity or the thickness gives very satisfactory 
results, especially for normally dispersive sites. For inversely 
dispersive media the existence of local minima of the objective 
function, defined as the “distance” between the theoretical and the 
experimental responses, makes the inversion process more difficult 
and gives rise to the problem of non-uniqueness. The non-uniqueness 
can be mitigated by adding a priori information and by adopting the 
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same procedures in situ and in the simulation. If a local search 
technique is used the only manner for overcoming the problem of the 
local minima consists of starting from different initial configurations 
which seem to be “good” candidates and then taking as final inverted 
profile that one for which the objective function reaches the absolute 
minimum. 
There are no theoretical criteria for being sure whether the found 
minimum is absolute or not. In fact even if the domain of the 
independent  variable is convex, no information is available about the 
objective function, that remains a sort of obscure box. 
The shear damping ratio Ds can be determined by either an uncoupled 
or a coupled procedure. Moreover a hybrid approach has been 
proposed. In all cases the results that have been obtained are in good 
agreement each other, but in the Author’s opinion there is still much 
room about this issue. It has been shown how relevant the use of all 
the Rayleigh modes is in the Geometric Rayleigh Spreading function 
and how limiting it is to use a too simplified and inadequate 
attenuation law of 1/√r. Another aspect that deserves a comment is the 
use of either an impulsive or a harmonic source. Of course the 
harmonic source is necessary for evaluating the Transfer Function of 
the system and hence for determining the Damping profile according 
to the currently used procedure. Also the harmonic source offers the 
advantages of getting a better signal to noise ratio even at low 
frequencies. Nevertheless the impulsive source allows for a transient 
picture of the travelling disturbance in the time-space domain. In this 
domain it is possible to have a clear image of the dispersion 
phenomenon and a direct measurement of the group velocity of the 
whole perturbance could be attempted. With regard to this a well 
established concept is that the group velocity coincides with the 
velocity of the energy associated to the whole disturbance. 
Even if the mathematical idealization of the physical reality predicts 
the existence of independent Rayleigh modes, each of them travelling 
at their own phase and group velocities, the perturbance spreads away 
in the time-space domain as a whole signal, made of different 
components superimposed together. To this complicated perturbation 
it is possible to associate a certain energy, that travels at a speed that 
depends on time and space. In the case of a time impulsive source an 
analytic expression for the effective or apparent group velocity has 
been formulated. 
This quantity has not only got a precise meaning but it may also reveal 
either an additional or more sensitive system response to the unknown 
parameters. 
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The choice of using either the accelerometers or the geo-phones for 
detecting the disturbance depends on the characteristics of the 
receivers and the reliability associated to them at different frequencies. 
It has also been proved that under certain conditions it is completely 
equivalent to use the spectrum of either the energy or the 
displacements as well as the velocities or the accelerations in 
evaluating the Rayleigh dispersion curve. 
One subject needs some considerations. Is it correct to consider the 
travelling disturbance as a complicate signal where all the modes are 
combined and hence assuming only an apparent or effective 
dispersion curve? Should it be more appropriate trying to 
experimentally discern the different components of motion such as the 
Rayleigh modes? The answer is not unique but it depends on the 
purpose. If a sufficient space is available for the experimental 
investigations, then the dispersion phenomenon can take place and the 
higher modes can be experimentally taken apart from each other. 
Notice that when an impulsive source is used for exciting a layered 
system on the free surface, at each frequency more than one Rayleigh 
mode is excited at the same time. As a consequence each Rayleigh 
mode has got different wave numbers that correspond to different 
frequencies and travel at different speeds. So a wave packet in front of 
the whole wave train and another wave packet at the back could in 
principle contain different components of the same Rayleigh mode. 
Again in order to clarify how it is possible to experimentally separate 
the Rayleigh modes, the spectrum of each independent mode says that 
the response of each mode is more or less intense at different 
frequencies. Hence for a given Rayleigh mode a significant amount of 
energy is associated only to some wave numbers, the other wave 
numbers that travel with different group velocities transfer a 
negligible amount of energy, so that their contribution to the wave 
field can be ignored. 
Instead if the space available in situ is not sufficient for the separation 
of the different Rayleigh modes, then a greater number of receivers 
could help a lot but the way to be followed consists of considering all 
the components of motion as a whole complicate perturbation. With 
this regard concepts such as apparent or effective phase or group 
velocities assume relevance. 
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Recommendations for Future Research 
 
There are many features that still need further investigation. About the 
stiffness profile it can be said that satisfactory results have been 
achieved by many researchers but very few of them consider the 
higher Rayleigh modes in the inversion procedure. When dealing with 
inversely dispersive profiles it becomes mandatory to make use of all 
Rayleigh modes. 
About the optimization algorithm to be used for the inversion 
problem, in the Author’s opinion the “best” algorithm in an absolute 
sense does not exist. Each optimization algorithm may work well or 
not depending on the particular problem to be solved. Only a certain 
experience on several real cases can permit a continuous improvement 
of the optimization algorithm. 
About the damping ratio profile Ds the use of all Rayleigh modes 
seems necessary for reliable results. Both the coupled and the 
uncoupled procedures have shown to be promising and other 
applications to real sites are needed. In particular a proper strategy 
would be to compare the results from SASW method and from other 
techniques on a simple site, as homogeneous as possible with depth or 
at least normally dispersive, that be well known and documented by 
means of alternative investigations. 
In this research the dispersion and the attenuation curves have been 
adopted as system response, because of the great amount of available 
experimental data and because of the knowledge accumulated in past 
years by several researchers. 
In the Author’s conviction in the framework of a coupled procedure a 
more appropriate quantity to be chosen as system response is the f-k 
spectrum of either displacements or energy. This choice is justified by 
the fact that both dispersion and attenuation curves are quantities 
derived from the spectrum, that is directly calculated from the 
measurements. 
 
Another aspect  is the importance of the experimental response. It is a 
matter of fact that the better the experimental response, the more 
successful the inversion. In this work an attempt has been made to 
extract more than one dispersion curve from the measured data. In 
some cases it has been possible to define two experimental apparent 
dispersion curves. The use of two curves instead of only one could 
definitely help reduce the non-uniqueness problem. 
 Until now one limiting hypothesis for the model used for the forward 
simulation of the experiments has been the horizontal layering of the 
medium. If the possibility of an inclination of any layer is admitted, 
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the mathematical problem of the wave propagation becomes more 
complicate and the possible combinations for the geometry increase 
considerably. Nevertheless there are two situations that at least 
deserve to be analyzed. The first geometry I is that one in which all 
the layers are parallel and inclined at the same angle with respect to 
the verticality (see fig.C.1). The only difference respect to the 
horizontal layering is the inclination of the gravity. Since the gravity is 
a static force and is not considered in the equations of motion, for this 
geometry the same solutions as for the horizontally layered half-space 
can be adopted, provided that the source be applied perpendicularly to 
the surface. The second geometry II consists of  a set of parallel layers 
except the surface one, that is inclined with respect to the others. 
There are two sub-cases, i.e. IIa the top layer is horizontal and the 
other ones are inclined (see fig.C.2) or IIb the top layer is the only one 
inclined and the other ones are horizontal (see fig.C.3). Anyway if the 
gravity is neglected in the equations of motions they are completely 
equivalent.  
The first consideration on this geometry concerns the loss of the radial 
symmetry with respect to the horizontal layering. Hence in the 
experimental tests it is necessary to detect the perturbation on both 
sides of the source. By intuition it could be said that a disturbance 
propagates towards the surface on the side of the source where the 
interfaces of the layers reach the surface (left side in fig.C.2, right side 
in fig.C.3), instead on the other side another disturbance travels away 
from the free surface. As a consequence one should expect a greater 
intensity of the perturbation on one side of the source with respect to 
the other side. 

 
Figure C.1: Layering I: all layers parallel and inclined at α. 
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Figure C.2: Layering IIa: surface layer horizontal and all deeper 
layers parallel and inclined at α. 
 

 
Figure C.3: Layering IIb: surface layer inclined at α and all deeper 
layers parallel and horizontal. 
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A last recommendation is about the potential use of the frequencies 
and the wave numbers of resonance for determining the damping ratio 
profile. In correspondence of a frequency of resonance for the jth mode 
the other modes have less importance, so the mistake in considering 
only the jth mode in the inversion process is mitigated. The Author 
would like to underline the utility of finding explicit relationship 
among the geometrical and mechanical properties of the system and 
the frequencies and the wave numbers of resonance. In fact, once the 
site has been characterized, the knowledge of the conditions of 
resonance of the site is necessary for many engineering applications, 
when dealing with surface waves. In this research only one layer over 
a half-space has been studied and investigations on a layered half-
space with two layers over an infinite half-space are being analyzed by 
the Author. Investigations on systems with additional layers would be 
auspicious. 
In the aim of a soil characterization by means of non invasive 
techniques a winning strategy consists of using different methods, 
which should be seen as complementary rather than alternative. So 
several methods can be borrowed from geophysics, such as seismic 
reflection and refraction. Also information from SH and Love waves 
can be very useful for the purpose. 
In conclusion the Author manifests his encouragement in investing 
time in the analysis of surface waves for soil characterization. The 
efforts are not only justified by a pragmatic goal, i.e. the soil 
characterization, but by the nobler stimulus of learning from what 
mater nature shows us. 
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