Soil properties and site characterization through Rayleigh waves
Vitantonio Roma(1)

Multichannel SASW (Spectral Analysis of Surface Waves) is a non-invasive technique, based on the detection of Rayleigh waves on the free surface of the site. The wave field can be generated on the free surface by means of a point source, either impulsive or harmonic. From the measured travelling perturbation the Experimental Geometric Dispersion Relation of Rayleigh waves is evaluated, by 2D Fourier Transformation of the wave field from time-space domain to frequency-wave number domain. The Identification Procedure is based on iterative variation of the initial set of System Parameters, until the distance between the Experimental and the Numerically Simulated Dispersion Relations is minimized. The Numerical Simulation is obtained by only 1D Fourier Transformation of the Transfer Function of the System, which is available in analytical form. The physical concept the method is based on is that the Dispersion Relation of Rayleigh wave represents an intrinsic characteristic of the Layered Medium. With this method the 2D Fourier Transformation of the wave field as in the experiments is avoided; there is no need of Source characterization; sites with irregular stiffness profiles can be identified, since Higher Modes of Rayleigh are considered; Congruence between Experiment and Simulation is guaranteed in the receivers configuration. As an example the method has been successfully applied to the Site under the Leaning Tower of Pisa.

1) Experimental setup-System Response and Stiffness Profile

2) Inversion Procedure: Experimental Test + Numerical Simulation + Optimization Problem

3) System Response: Geometrical Dispersion Relation of Rayleigh Waves

4) Rayleigh Dispersion Relation as intrinsic characteristic of the Layered Media

5) The Numerical Simulation can be performed using the System Transfer Function

6) For Site Identification with Irregular Stiffness Profile the Higher Modes of Rayleigh Waves must be considered

7) Experimental Response (rhombus) and Numerical Simulation at last iteration (solid squared line) of the Inversion Procedure at Miracles Square in Pisa

8) Comparison among Cross Hole and Multichannel SASW and the stratigraphy. The Site at Miracles Square in Pisa is Inversely Dispersive.

9) The proposed Numerical Simulation of Rayleigh Dispersion Relation as System Response is based on Wave Propagation in Layered Media and allows for: (a) Congruence between experimental and theoretical procedures (b) Higher Modes of Rayleigh to be considered (c) No need of Source Characterization (d) Time saving in the iterative Inversion Problem

(1) GEODATA (GeoEngineering Consultants, Torino, Italy)